In the no-scale supergravity with Type-I Seesaw model of Non-minimal supersymmetric standard model (NMSSM), we have analysed inflation, reheating and leptogenesis. A no-scale supergravity realization of Starobinsky model of inflation in simple Wess-Zumino model have been shown earlier by Ellis et al. Here we show a no-scale supergravity realization of Starobinsky model of inflation in Type-I Seesaw framework of NMSSM. In this framework an appropriate choice of no-scale Kahler potential results in Starobinsky like plateau inflation along a Higgs-sneutrino $D$-flat direction consistent with the CMB observations. In leptogenesis, the soft-breaking trilinear and bilinear terms play important role. Using conditions for non-thermal contribution to $CP$ asymmetry and successful leptogenesis together with the appropriate reheating at the end of inflation, we have obtained important constraints on the soft supersymmetry breaking parameters.
We investigate the possibility of low-scale leptogenesis in the minimal supersymmetric standard model extended with right handed (s)neutrinos. We demonstrate that successful leptogenesis can be easily achieved at a scale as low as ~ TeV where lepton number and CP violation comes from soft supersymmetry breaking terms. The scenario is shown to be compatible with neutrino masses data.
No-scale supergravity provides a successful framework for Starobinsky-like inflation models. Two classes of models can be distinguished depending on the identification of the inflaton with the volume modulus, $T$ (C-models), or a matter-like field, $phi$ (WZ-models). When supersymmetry is broken, the inflationary potential may be perturbed, placing restrictions on the form and scale of the supersymmetry breaking sector. We consider both types of inflationary models in the context of high-scale supersymmetry. We further distinguish between models in which the gravitino mass is below and above the inflationary scale. We examine the mass spectra of the inflationary sector. We also consider in detail mechanisms for leptogenesis for each model when a right-handed neutrino sector, used in the seesaw mechanism to generate neutrino masses, is employed. In the case of C-models, reheating occurs via inflaton decay to two Higgs bosons. However, there is a direct decay channel to the lightest right-handed neutrino which leads to non-thermal leptogenesis. In the case of WZ-models, in order to achieve reheating, we associate the matter-like inflaton with one of the right-handed sneutrinos whose decay to the lightest right handed neutrino simultaneously reheats the Universe and generates the baryon asymmetry through leptogenesis.
We study the transformation into a baryon asymmetry of a charge initially stored in a complex (waterfall) scalar field at the end of a hybrid inflation phase as described in Ref[1]. The waterfall field is coupled to right-handed neutrinos, and is also responsible for their Majorana masses. The charge is finally transferred to the leptons of the Standard Model through the decay of the right-handed neutrinos without introducing new CP violating interactions. Other needed processes, like the decay of the inflaton field and the reheating of the Universe are also discussed in detail.
Recent studies suggest that the process of symmetry breaking after inflation typically occurs very fast, within a single oscillation of the symmetry-breaking field, due to the spinodal growth of its long-wave modes, otherwise known as `tachyonic preheating. We show how this sudden transition from the false to the true vacuum can induce a significant production of particles, bosons and fermions, coupled to the symmetry-breaking field. We find that this new mechanism of particle production in the early Universe may have interesting consequences for the origin of supermassive dark matter and the generation of the observed baryon asymmetry through leptogenesis.
We study a scale-invariant model of quadratic gravity with a non-minimally coupled scalar field. We focus on cosmological solutions and find that scale invariance is spontaneously broken and a mass scale naturally emerges. Before the symmetry breaking, the Universe undergoes an inflationary expansion with nearly the same observational predictions of Starobinskys model. At the end of inflation, the Hubble parameter and the scalar field converge to a stable fixed point through damped oscillations and the usual Einstein-Hilbert action is recovered. The oscillations around the fixed point can reheat the Universe in various ways and we study in detail some of these possibilities.