Do you want to publish a course? Click here

Particle production from symmetry breaking after inflation and leptogenesis

68   0   0.0 ( 0 )
 Added by Juan Garcia-Bellido
 Publication date 2001
  fields
and research's language is English




Ask ChatGPT about the research

Recent studies suggest that the process of symmetry breaking after inflation typically occurs very fast, within a single oscillation of the symmetry-breaking field, due to the spinodal growth of its long-wave modes, otherwise known as `tachyonic preheating. We show how this sudden transition from the false to the true vacuum can induce a significant production of particles, bosons and fermions, coupled to the symmetry-breaking field. We find that this new mechanism of particle production in the early Universe may have interesting consequences for the origin of supermassive dark matter and the generation of the observed baryon asymmetry through leptogenesis.



rate research

Read More

We propose a unified setup for dark matter, inflation and baryon asymmetry generation through the neutrino mass seesaw mechanism. Our scenario emerges naturally from an extended gauge group containing $B-L$ as a non-commutative symmetry, broken by a singlet scalar that also drives inflation. Its decays reheat the universe, producing the lightest right-handed neutrino. Automatic matter parity conservation leads to the stability of an asymmetric dark matter candidate, directly linked to the matter-antimatter asymmetry in the universe.
We present a scenario of vector dark matter production from symmetry breaking at the end of inflation. In this model, the accumulated energy density associated with the quantum fluctuations of the dark photon accounts for the present energy density of dark matter. The inflaton is a real scalar field while a heavy complex scalar field, such as the waterfall of hybrid inflation, is charged under the dark gauge field. After the heavy field becomes tachyonic at the end of inflation, rolling rapidly towards its global minimum, the dark photon acquires mass via the Higgs mechanism. To prevent the decay of the vector field energy density during inflation, we introduce couplings between the inflaton and the gauge field such that the energy is pumped to the dark sector. The setup can generate the observed dark matter abundance for a wide range of the dark photons mass and with the reheat temperature around $10^{12}$ GeV. The model predicts the formation of cosmic strings at the end of inflation with the tensions which are consistent with the CMB upper bounds.
149 - Stuart Raby 2017
In this talk I discuss a supersymmetric Pati-Salam model of fermion masses and mixing angles which fits low energy data. The model is then extended to include an inflationary sector which is shown to be consistent with Bicep2-Keck-Planck data. The energy scale during inflation is associated with the PS symmetry breaking scale. Finally, the model is shown to be consistent with the observed baryon-to-entropy ratio necessary for Big Bang Nucleosynthesis. It turns out that only the heaviest right-handed neutrino decays produce the correct sign of the baryon-to-entropy ratio. Nevertheless, we obtain the observed value due to the process of instant preheating.
We propose that the observed matter-antimatter asymmetry can be naturally produced as a byproduct of axion-driven slow-roll inflation by coupling the axion to standard-model neutrinos. We assume that GUT scale right-handed neutrinos are responsible for the masses of the standard model neutrinos and that the Higgs field is light during inflation and develops a Hubble scale vacuum expectation value (VEV). In this set up, the rolling axion generates a helicity asymmetry in standard-model neutrinos. Following inflation, this helicity asymmetry becomes equal to a net lepton number as the Higgs VEV decays and is partially re-processed by the $SU(2)_{L}$ sphaleron into a net baryon number.
185 - Mayumi Aoki , Jisuke Kubo , 2021
Dynamical chiral symmetry breaking in a QCD-like hidden sector is used to generate the Planck mass and the electroweak scale including the heavy right-handed neutrino mass. A real scalar field transmits the energy scale of the hidden sector to the visible sectors, playing besides a role of inflaton in the early Universe while realizing a Higgs-inflation-like model. Our dark matter candidates are hidden pions that raise due to dynamical chiral symmetry breaking. They are produced from the decay of inflaton. Unfortunately, it will be impossible to directly detect them, because they are super heavy ($10^{9,sim,12}$ GeV), and moreover the interaction with the visible sector is extremely suppressed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا