Do you want to publish a course? Click here

Observing the changing surface structures of the active K giant sigma Gem with SONG

378   0   0.0 ( 0 )
 Added by Heidi Korhonen
 Publication date 2020
  fields Physics
and research's language is English
 Authors H. Korhonen




Ask ChatGPT about the research

Aims: We aim to study the spot evolution and differential rotation in the magnetically active cool K-type giant star sigma Gem from broadband photometry and continuous spectroscopic observations that span 150 nights. Methods: We use high-resolution, high signal-to-noise ratio spectra obtained with the Hertzsprung SONG telescope to reconstruct surface (photospheric) temperature maps with Doppler imaging techniques. The 303 observations span 150 nights and allow for a detailed analysis of the spot evolution and surface differential rotation. The Doppler imaging results are compared to simultaneous broadband photometry from the Tennessee State University T3 0.4 m Automated Photometric Telescope. The activity from the stellar chromosphere, which is higher in the stellar atmosphere, is also studied using SONG observations of Balmer H alpha line profiles and correlated with the photospheric activity. Results: The temperature maps obtained during eight consecutive stellar rotations show mainly high-latitude or polar spots, with the main spot concentrations above latitude 45 deg. The spots concentrate around phase 0.25 near the beginning of our observations and around phase 0.75 towards the end. The photometric observations confirm a small jump in spot phases that occurred in February 2016. The cross-correlation of the temperature maps reveals rather strong solar-like differential rotation, giving a relative surface differential rotation coefficient of $alpha$ = 0.10 +/- 0.02. There is a weak correlation between the locations of starspots and enhanced emission in the chromosphere at some epochs.

rate research

Read More

We demonstrate the power of the local correlation tracking technique on stellar data for the first time. We recover the spot migration pattern of the long-period RS CVn-type binary $sigma$ Gem from a set of six Doppler images from 3.6 consecutive rotation cycles. The resulting surface flow map suggests a weak anti-solar differential rotation with $alphaapprox-0.0022pm0.0016$, and a coherent poleward spot migration with an average velocity of $220pm10$ m s$^{-1}$. This result agrees with our recent findings from another study and could also be confirmed theoretically.
Based on our photometric observations in 2015-2016 and archival photometric data for the active red giant PZ Mon, we have found the main characteristics of the stellar surface: the unspotted surface temperature Teff=4730K, the spot temperature Tspot=3500K, and the relative spot area from 30 to 40%. The best agreement with the observations has been achieved in our three-spot model including a cool polar spot with a temperature of about 3500K as well as large and small warm spots with a temperature of about 4500K. The stable polar spot is responsible for the long-period brightness variations. Its presence is confirmed by an analysis of the TiO 7054$~AA$ molecular band. The small-amplitude 34-day variability is attributable to the warm spots located on the side of the secondary component, which determine the relatively stable active longitude.
Based on the multiband (BVRIJHKL) photometric observations of the active red giant PZ Mon performed for the first time in the winter season of 2017-2018, we have determined the main characteristics of the spotted stellar surface in a parametric three-spot model. The unspotted surface temperature is Teff=4730 K, the temperature of the cool spots is Tspot=3500 K, their relative area is about 41%, and the temperature of the warm spots is Twarm=4500 K with a maximum relative area up to 20%. The distribution of spots over the stellar surface has been modeled. The warm spots have been found to be distributed at various longitudes in the hemisphere on the side of the secondary component and are most likely a result of its influence.
We investigate the magnetic field at the surface of 48 red giants selected as promising for detection of Stokes V Zeeman signatures in their spectral lines. We use the spectropolarimeters Narval and ESPaDOnS to detect circular polarization within the photospheric absorption lines of our targets and use the least-squares deconvolution (LSD) method. We also measure the classical S-index activity indicator, and the stellar radial velocity. To infer the evolutionary status of our giants and to interpret our results, we use state-of-the-art stellar evolutionary models with predictions of convective turnover times. We unambiguously detect magnetic fields via Zeeman signatures in 29 of the 48 red giants in our sample. Zeeman signatures are found in all but one of the 24 red giants exhibiting signs of activity, as well as 6 out of 17 bright giant stars.The majority of the magnetically detected giants are either in the first dredge up phase or at the beginning of core He burning, i.e. phases when the convective turnover time is at a maximum: this corresponds to a magnetic strip for red giants in the Hertzsprung-Russell diagram. A close study of the 16 giants with known rotational periods shows that the measured magnetic field strength is tightly correlated with the rotational properties, namely to the rotational period and to the Rossby number Ro. Our results show that the magnetic fields of these giants are produced by a dynamo. Four stars for which the magnetic field is measured to be outstandingly strong with respect to that expected from the rotational period/magnetic field relation or their evolutionary status are interpreted as being probable descendants of magnetic Ap stars. In addition to the weak-field giant Pollux, 4 bright giants (Aldebaran, Alphard, Arcturus, eta Psc) are detected with magnetic field strength at the sub-gauss level.
The Stellar Observation Network Group (SONG) is an initiative to build a worldwide network of 1m telescopes with highprecision radial-velocity spectrographs. Here we analyse the first radial-velocity time series of a red-giant star measured by the SONG telescope at Tenerife. The asteroseismic results demonstrate a major increase in the achievable precision of the parameters for redgiant stars obtainable from ground-based observations. Reliable tests of the validity of these results are needed, however, before the accuracy of the parameters can be trusted. We analyse the first SONG time series for the star 46 LMi, which has a precise parallax and an angular diameter measured from interferometry, and therefore a good determination of the stellar radius. We use asteroseismic scaling relations to obtain an accurate mass, and modelling to determine the age. A 55-day time series of high-resolution, high S/N spectra were obtained with the first SONG telescope. We derive the asteroseismic parameters by analysing the power spectrum. To give a best guess on the large separation of modes in the power spectrum, we have applied a new method which uses the scaling of Kepler red-giant stars to 46 LMi. Several methods have been applied: classical estimates, seismic methods using the observed time series, and model calculations to derive the fundamental parameters of 46 LMi. Parameters determined using the different methods are consistent within the uncertainties. We find the following values for the mass M (scaling), radius R (classical), age (modelling), and surface gravity (combining mass and radius): M = 1.09 +- 0.04Msun, R = 7.95 +- 0.11 Rsun, age t = 8.2 +- 1.9Gy, and log g = 2.674 +- 0.013.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا