Do you want to publish a course? Click here

Competing zero-field Chern insulators in Superconducting Twisted Bilayer Graphene

107   0   0.0 ( 0 )
 Added by Dmitri K. Efetov
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The discovery of magic angle twisted bilayer graphene (MATBG) has unveiled a rich variety of superconducting, magnetic and topologically nontrivial phases. The existence of all these phases in one material, and their tunability, has opened new pathways for the creation of unusual gate tunable junctions. However, the required conditions for their creation - gate induced transitions between phases in zero magnetic field - have so far not been achieved. Here, we report on the first experimental demonstration of a device that is both a zero-field Chern insulator and a superconductor. The Chern insulator occurs near moire cell filling factor v = +1 in a hBN non-aligned MATBG device and manifests itself via an anomalous Hall effect. The insulator has Chern number C = +-1 and a relatively high Curie temperature of Tc = 4.5 K. Gate tuning away from this state exposes strong superconducting phases with critical temperatures of up to Tc = 3.5 K. In a perpendicular magnetic field above B > 0.5 T we observe a transition of the /C/= +1 Chern insulator from Chern number C = +-1 to C = 3, characterized by a quantized Hall plateau with Ryx = h/3e2. These observations show that interaction-induced symmetry breaking in MATBG leads to zero-field ground states that include almost degenerate and closely competing Chern insulators, and that states with larger Chern numbers couple most strongly to the B-field. By providing the first demonstration of a system that allows gate-induced transitions between magnetic and superconducting phases, our observations mark a major milestone in the creation of a new generation of quantum electronics.



rate research

Read More

Fractional Chern insulators (FCIs) are lattice analogues of fractional quantum Hall states that may provide a new avenue toward manipulating non-abelian excitations. Early theoretical studies have predicted their existence in systems with energetically flat Chern bands and highlighted the critical role of a particular quantum band geometry. Thus far, however, FCI states have only been observed in Bernal-stacked bilayer graphene aligned with hexagonal boron nitride (BLG/hBN), in which a very large magnetic field is responsible for the existence of the Chern bands, precluding the realization of FCIs at zero field and limiting its potential for applications. By contrast, magic angle twisted bilayer graphene (MATBG) supports flat Chern bands at zero magnetic field, and therefore offers a promising route toward stabilizing zero-field FCIs. Here we report the observation of eight FCI states at low magnetic field in MATBG enabled by high-resolution local compressibility measurements. The first of these states emerge at 5 T, and their appearance is accompanied by the simultaneous disappearance of nearby topologically-trivial charge density wave states. Unlike the BLG/hBN platform, we demonstrate that the principal role of the weak magnetic field here is merely to redistribute the Berry curvature of the native Chern bands and thereby realize a quantum band geometry favorable for the emergence of FCIs. Our findings strongly suggest that FCIs may be realized at zero magnetic field and pave the way for the exploration and manipulation of anyonic excitations in moire systems with native flat Chern bands.
Interactions among electrons and the topology of their energy bands can create novel quantum phases of matter. Most topological electronic phases appear in systems with weak electron-electron interactions. The instances where topological phases emerge only as a result of strong interactions are rare, and mostly limited to those realized in the presence of intense magnetic fields. The discovery of flat electronic bands with topological character in magic-angle twisted bilayer graphene (MATBG) has created a unique opportunity to search for new strongly correlated topological phases. Here we introduce a novel local spectroscopic technique using a scanning tunneling microscope (STM) to detect a sequence of topological insulators in MATBG with Chern numbers C = $pm$ 1, $pm$ 2, $pm$ 3, which form near $ u$ = $pm$ 3, $pm$ 2, $pm$ 1 electrons per moire unit cell respectively, and are stabilized by the application of modest magnetic fields. One of the phases detected here (C = +1) has been previously observed when the sublattice symmetry of MATBG was intentionally broken by hexagonal boron nitride (hBN) substrates, with interactions playing a secondary role. We demonstrate that strong electron-electron interactions alone can produce not only the previously observed phase, but also new and unexpected Chern insulating phases in MATBG. The full sequence of phases we observed can be understood by postulating that strong correlations favor breaking time-reversal symmetry to form Chern insulators that are stabilized by weak magnetic fields. Our findings illustrate that many-body correlations can create topological phases in moire systems beyond those anticipated from weakly interacting models.
The interplay between strong electron-electron interactions and band topology can lead to novel electronic states that spontaneously break symmetries. The discovery of flat bands in magic-angle twisted bilayer graphene (MATBG) with nontrivial topology has provided a unique platform in which to search for new symmetry-broken phases. Recent scanning tunneling microscopy and transport experiments have revealed a sequence of topological insulating phases in MATBG with Chern numbers $C=pm 3, , pm 2, , pm 1$ near moire band filling factors $ u = pm 1, , pm 2, , pm 3$, corresponding to a simple pattern of flavor-symmetry-breaking Chern insulators. Here, we report high-resolution local compressibility measurements of MATBG with a scanning single electron transistor that reveal a new sequence of incompressible states with unexpected Chern numbers observed down to zero magnetic field. We find that the Chern numbers for eight of the observed incompressible states are incompatible with the simple picture in which the $C= pm 1$ bands are sequentially filled. We show that the emergence of these unusual incompressible phases can be understood as a consequence of broken translation symmetry that doubles the moire unit cell and splits each $C=pm 1$ band into a $C=pm 1$ band and a $C=0$ band. Our findings significantly expand the known phase diagram of MATBG, and shed light onto the origin of the close competition between different correlated phases in the system.
In bilayer graphene rotationally faulted to theta=1.1 degrees, interlayer tunneling and rotational misalignment conspire to create a pair of low energy flat band that have been found to host various correlated phenomena at partial filling. Most work to date has focused on the zero magnetic field phase diagram, with magnetic field (B) used as a probe of the B=0 band structure. Here, we show that twisted bilayer graphene (tBLG) in a B as low as 2T hosts a cascade of ferromagnetic Chern insulators with Chern number |C|=1,2 and 3. We argue that the emergence of the Chern insulators is driven by the interplay of the moire superlattice with the B, which endow the flat bands with a substructure of topologically nontrivial subbands characteristic of the Hofstadter butterfly. The new phases can be accounted for in a Stoner picture in which exchange interactions favor polarization into one or more spin- and valley-isospin flavors; in contrast to conventional quantum Hall ferromagnets, however, electrons polarize into between one and four copies of a single Hofstadter subband with Chern number C=-1. In the case of the C=pm3 insulators in particular, B catalyzes a first order phase transition from the spin- and valley-unpolarized B=0 state into the ferromagnetic state. Distinct from other moire heterostructures, tBLG realizes the strong-lattice limit of the Hofstadter problem and hosts Coulomb interactions that are comparable to the full bandwidth W and are consequently much stronger than the width of the individual Hofstadter subbands. In our experimental data, the dominance of Coulomb interactions manifests through the appearance of Chern insulating states with spontaneously broken superlattice symmetry at half filling of a C=-2 subband. Our experiments show that that tBLG may be an ideal venue to explore the strong interaction limit within partially filled Hofstadter bands.
Strongly interacting electrons in solid-state systems often display tendency towards multiple broken symmetries in the ground state. The complex interplay between different order parameters can give rise to a rich phase diagram. Here, we report on the identification of intertwined phases with broken rotational symmetry in magic-angle twisted bilayer graphene (TBG). Using transverse resistance measurements, we find a strongly anisotropic phase located in a wedge above the underdoped region of the superconducting dome. Upon crossing the superconducting dome, a reduction of the critical temperature is observed, similar to the behavior of certain cuprate superconductors. Furthermore, the superconducting state exhibits a anisotropic response to an directional-dependent in-plane magnetic field, revealing a nematic pairing state across the entire superconducting dome. These results indicate that nematic fluctuations might play an important role in the low-temperature phases of magic-angle TBG, and pave the way for using highly-tunable moir{e} superlattices to investigate intertwined phases in quantum materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا