Do you want to publish a course? Click here

Observation of spin-momentum-layer locking in centrosymmetric BiOI

293   0   0.0 ( 0 )
 Added by Qihang Liu
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Spin polarization effects in nonmagnetic materials are generally believed as an outcome of spin-orbit coupling provided that the global inversion symmetry is lacking, also known as spin-momentum locking. The recently discovered hidden spin polarization indicates that specific atomic site asymmetry could also induce measurable spin polarization, leading to a paradigm shift to centrosymmetric crystals for potential spintronic applications. Here, combining spin- and angle-resolved photoemission spectroscopy and theoretical calculations, we report distinct spin-layer locking phenomena surrounding different high-symmetry momenta in a centrosymmetric, layered material BiOI. The measured spin is highly polarized along the Brillouin zone boundary, while is almost vanishing around the zone center due to its nonsymmorphic crystal structure. Our work not only demonstrates the existence of hidden spin polarization, but also uncovers the microscopic mechanism of the way spin, momentum and layer locking to each other, shedding lights on the design metrics for future spintronic devices.



rate research

Read More

The generally accepted view that spin polarization is induced by the asymmetry of the global crystal space group has limited the search for spintronics [1] materials to non-centrosymmetric materials. Recently it has been suggested that spin polarization originates fundamentally from local atomic site asymmetries [2], and therefore centrosymmetric materials may exhibit previously overlooked spin polarizations. Here by using spin- and angle-resolved photoemission spectroscopy (spin-ARPES), we report helical spin texture induced by local Rashba effect (R-2) in centrosymmetric monolayer PtSe$_2$ film. First-principles calculations and effective analytical model support the spin-layer locking picture: in contrast to the spin splitting in conventional Rashba effect (R-1), the opposite spin polarizations induced by R-2 are degenerate in energy while spatially separated in the top and bottom Se layers. These results not only enrich our understanding of spin polarization physics, but also may find applications in electrically tunable spintronics.
Spin-momentum locking is essential to the spin-split Fermi surfaces of inversion-symmetry broken materials, which are caused by either Rashba-type or Zeeman-type spin-orbit coupling (SOC). While the effect of Zeeman-type SOC on superconductivity has experimentally been shown recently, that of Rashba-type SOC remains elusive. Here we report on convincing evidence for the critical role of the spin-momentum locking on crystalline atomic-layer superconductors on surfaces, for which the presence of the Rashba-type SOC is demonstrated. In-situ electron transport measurements reveal that in-plane upper critical magnetic field is anomalously enhanced, reaching approximately three times the Pauli limit at $T = 0$. Our quantitative analysis clarifies that dynamic spin-momentum locking, a mechanism where spin is forced to flip at every elastic electron scattering, suppresses the Cooper pair-breaking parameter by orders of magnitude and thereby protects superconductivity. The present result provides a new insight into how superconductivity can survive the detrimental effects of strong magnetic fields and exchange interactions.
A recent 2D spinFET concept proposes to switch electrostatically between two separate sublayers with strong and opposite intrinsic Rashba effects. This concept exploits the spin-layer locking mechanism present in centrosymmetric materials with local dipole fields, where a weak electric field can easily manipulate just one of the spin channels. Here, we propose a novel monolayer material within this family, lutetium oxide iodide (LuIO). It displays one of the largest Rashba effects among 2D materials (up to $k_R = 0.08$ {AA}$^{-1}$), leading to a $pi/2$ rotation of the spins over just 1 nm. The monolayer had been predicted to be exfoliable from its experimentally-known 3D bulk counterpart, with a binding energy even lower than graphene. We characterize and model with first-principles simulations the interplay of the two gate-controlled parameters for such devices: doping and spin channel selection. We show that the ability to split the spin channels in energy diminishes with doping, leading to specific gate-operation guidelines that can apply to all devices based on spin-layer locking.
Spin-momentum locking is a unique feature of spin-orbit coupled materials and a key to their promise of applications in spintronics and quantum computation. Much of the existing work has been focused on an orthogonal locking between the directions of spin and momentum vectors in the context of both topological and non-topological materials. Mechanisms responsible for non-orthogonal spin-momentum locking (NOSML) have drawn little attention, although an NOSML effect has been reported on the topological surface of $alpha$-$Sn$. Here, we demonstrate how spin-orbit scattering from non-magnetic impurities can produce the NOSML state. The parameter describing spin-orbit coupling strength in our analysis of the NOMSL could be extracted directly from the spin-resolved angle-resolved photoemission (S-ARPES) spectra. Our formalism is applicable to all spin-orbit coupled systems and not limited only to topological states. An understanding of NOSML effects bears on spin-orbit dependent phenomena more generally, including issues of spin-to-charge conversion and the interpretation of quasiparticle interference (QPI) patterns and scanning-tunneling spectra (STS) in materials.
Conversion of pure spin current to charge current in single-layer graphene (SLG) is investigated by using spin pumping. Large-area SLG grown by chemical vapor deposition is used for the conversion. Efficient spin accumulation in SLG by spin pumping enables observing an electromotive force produced by the inverse spin Hall effect (ISHE) of SLG. The spin Hall angle of SLG is estimated to be 6.1*10-7. The observed ISHE in SLG is ascribed to its non-negligible spin-orbit interaction in SLG.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا