Do you want to publish a course? Click here

Bose-Einstein condensates in an atom-optomechanical system with effective global non-uniform interaction

247   0   0.0 ( 0 )
 Added by Xiangfa Zhou
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider a hybrid atom-optomechanical system consisting of a mechanical membrane inside an optical cavity and an atomic Bose-Einstein condensate outside the cavity. The condensate is confined in an optical lattice potential formed by a traveling laser beam reflected off one cavity mirror. We derive the cavity-mediated effective atom-atom interaction potential, and find that it is non-uniform, site-dependent, and does not decay as the interatomic distance increases. We show that the presence of this effective interaction breaks the Z$_2$ symmetry of the system and gives rise to new quantum phases and phase transitions. When the long-range interaction dominates, the condensate breaks the translation symmetry and turns into a novel self-organized lattice-like state with increasing particle densities for sites farther away from the cavity. We present the phase diagram of the system, and investigate the stabilities of different phases by calculating their respective excitation spectra. The system can serve as a platform to explore various self-organized phenomena induced by the long-range interactions.



rate research

Read More

We study the evolution of a collisionally inhomogeneous matter wave in a spatial gradient of the interaction strength. Starting with a Bose-Einstein condensate with weak repulsive interactions in quasi-one-dimensional geometry, we monitor the evolution of a matter wave that simultaneously extends into spatial regions with attractive and repulsive interactions. We observe the formation and the decay of soliton-like density peaks, counter-propagating self-interfering wave packets, and the creation of cascades of solitons. The matter-wave dynamics is well reproduced in numerical simulations based on the nonpolynomial Schroedinger equation with three-body loss, allowing us to better understand the underlying behaviour based on a wavelet transformation. Our analysis provides new understanding of collapse processes for solitons, and opens interesting connections to other nonlinear instabilities.
53 - JingJun Zhu , Xi Chen 2020
Robust stimulated Raman exact passages are requisite for controlling nonlinear quantum systems, with the wide applications ranging from ultracold molecules, non-linear optics to superchemistry. Inspired by shortcuts to adiabaticity, we propose the fast-forward scaling of stimulated Raman adiabatic processes with the nonlinearity involved, describing the transfer from an atomic Bose-Einstein condensate to a molecular one by controllable external fields. The fidelity and robustness of atom-molecule conversion are shown to surpass those of conventional adiabatic passages, assisted by fast-forward driving field. Finally, our results are extended to the fractional stimulated Raman adiabatic processes for the coherent superposition of atomic and molecular states.
Interference of an array of independent Bose-Einstein condensates, whose experiment has been performed recently, is theoretically studied in detail. Even if the number of the atoms in each gas is kept finite and the phases of the gases are not well defined, interference fringes are observed on each snapshot. The statistics of the snapshot interference patterns, i.e., the average fringe amplitudes and their fluctuations (covariance), are computed analytically, and concise formulas for their asymptotic values for long time of flight are derived. Processes contributing to these quantities are clarified and the relationship with the description on the basis of the symmetry-breaking scenario is revealed.
We investigate a Bose Einstein condensate held in a 1D optical lattice whose phase undergoes a fast oscillation using a statistical analysis. The averaged potential experienced by the atoms boils down to a periodic potential having the same spatial period but with a renormalized depth. However, the atomic dynamics also contains a emph{micromotion} whose main features are revealed by a Kolmorogov-Smirnov analysis of the experimental momentum distributions. We furthermore discuss the impact of the micromotion on a quench process corresponding to a proper sudden change of the driving amplitude which reverses the curvature of the averaged potential.
Interferometry with ultracold atoms promises the possibility of ultraprecise and ultrasensitive measurements in many fields of physics, and is the basis of our most precise atomic clocks. Key to a high sensitivity is the possibility to achieve long measurement times and precise readout. Ultra cold atoms can be precisely manipulated at the quantum level, held for very long times in traps, and would therefore be an ideal setting for interferometry. In this paper we discuss how the non-linearities from atom-atom interactions on one hand allow to efficiently produce squeezed states for enhanced readout, but on the other hand result in phase diffusion which limits the phase accumulation time. We find that low dimensional geometries are favorable, with two-dimensional (2D) settings giving the smallest contribution of phase diffusion caused by atom-atom interactions. Even for time sequences generated by optimal control the achievable minimal detectable interaction energy $Delta E^{rm min}$ is on the order of 0.001 times the chemical potential of the BEC in the trap. From there we have to conclude that for more precise measurements with atom interferometers more sophisticated strategies, or turning off the interaction induced dephasing during the phase accumulation stage, will be necessary.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا