Do you want to publish a course? Click here

Intervention Efficient Algorithms for Approximate Learning of Causal Graphs

91   0   0.0 ( 0 )
 Added by Raghavendra Addanki
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We study the problem of learning the causal relationships between a set of observed variables in the presence of latents, while minimizing the cost of interventions on the observed variables. We assume access to an undirected graph $G$ on the observed variables whose edges represent either all direct causal relationships or, less restrictively, a superset of causal relationships (identified, e.g., via conditional independence tests or a domain expert). Our goal is to recover the directions of all causal or ancestral relations in $G$, via a minimum cost set of interventions. It is known that constructing an exact minimum cost intervention set for an arbitrary graph $G$ is NP-hard. We further argue that, conditioned on the hardness of approximate graph coloring, no polynomial time algorithm can achieve an approximation factor better than $Theta(log n)$, where $n$ is the number of observed variables in $G$. To overcome this limitation, we introduce a bi-criteria approximation goal that lets us recover the directions of all but $epsilon n^2$ edges in $G$, for some specified error parameter $epsilon > 0$. Under this relaxed goal, we give polynomial time algorithms that achieve intervention cost within a small constant factor of the optimal. Our algorithms combine work on efficient intervention design and the design of low-cost separating set systems, with ideas from the literature on graph property testing.



rate research

Read More

We consider recovering a causal graph in presence of latent variables, where we seek to minimize the cost of interventions used in the recovery process. We consider two intervention cost models: (1) a linear cost model where the cost of an intervention on a subset of variables has a linear form, and (2) an identity cost model where the cost of an intervention is the same, regardless of what variables it is on, i.e., the goal is just to minimize the number of interventions. Under the linear cost model, we give an algorithm to identify the ancestral relations of the underlying causal graph, achieving within a $2$-factor of the optimal intervention cost. This approximation factor can be improved to $1+epsilon$ for any $epsilon > 0$ under some mild restrictions. Under the identity cost model, we bound the number of interventions needed to recover the entire causal graph, including the latent variables, using a parameterization of the causal graph through a special type of colliders. In particular, we introduce the notion of $p$-colliders, that are colliders between pair of nodes arising from a specific type of conditioning in the causal graph, and provide an upper bound on the number of interventions as a function of the maximum number of $p$-colliders between any two nodes in the causal graph.
Approximate nearest neighbor algorithms are used to speed up nearest neighbor search in a wide array of applications. However, current indexing methods feature several hyperparameters that need to be tuned to reach an acceptable accuracy--speed trade-off. A grid search in the parameter space is often impractically slow due to a time-consuming index-building procedure. Therefore, we propose an algorithm for automatically tuning the hyperparameters of indexing methods based on randomized space-partitioning trees. In particular, we present results using randomized k-d trees, random projection trees and randomized PCA trees. The tuning algorithm adds minimal overhead to the index-building process but is able to find the optimal hyperparameters accurately. We demonstrate that the algorithm is significantly faster than existing approaches, and that the indexing methods used are competitive with the state-of-the-art methods in query time while being faster to build.
We give a quasipolynomial time algorithm for the graph matching problem (also known as noisy or robust graph isomorphism) on correlated random graphs. Specifically, for every $gamma>0$, we give a $n^{O(log n)}$ time algorithm that given a pair of $gamma$-correlated $G(n,p)$ graphs $G_0,G_1$ with average degree between $n^{varepsilon}$ and $n^{1/153}$ for $varepsilon = o(1)$, recovers the ground truth permutation $piin S_n$ that matches the vertices of $G_0$ to the vertices of $G_n$ in the way that minimizes the number of mismatched edges. We also give a recovery algorithm for a denser regime, and a polynomial-time algorithm for distinguishing between correlated and uncorrelated graphs. Prior work showed that recovery is information-theoretically possible in this model as long the average degree was at least $log n$, but sub-exponential time algorithms were only known in the dense case (i.e., for $p > n^{-o(1)}$). Moreover, Percolation Graph Matching, which is the most common heuristic for this problem, has been shown to require knowledge of $n^{Omega(1)}$ seeds (i.e., input/output pairs of the permutation $pi$) to succeed in this regime. In contrast our algorithms require no seed and succeed for $p$ which is as low as $n^{o(1)-1}$.
We consider a similarity measure between two sets $A$ and $B$ of vectors, that balances the average and maximum cosine distance between pairs of vectors, one from set $A$ and one from set $B$. As a motivation for this measure, we present lineage tracking in a database. To practically realize this measure, we need an approximate search algorithm that given a set of vectors $A$ and sets of vectors $B_1,...,B_n$, the algorithm quickly locates the set $B_i$ that maximizes the similarity measure. For the case where all sets are singleton sets, essentially each is a single vector, there are known efficient approximate search algorithms, e.g., approximat
Adversarial training is the de facto most promising defense against adversarial examples. Yet, its passive nature inevitably prevents it from being immune to unknown attackers. To achieve a proactive defense, we need a more fundamental understanding of adversarial examples, beyond the popular bounded threat model. In this paper, we provide a causal viewpoint of adversarial vulnerability: the cause is the confounder ubiquitously existing in learning, where attackers are precisely exploiting the confounding effect. Therefore, a fundamental solution for adversarial robustness is causal intervention. As the confounder is unobserved in general, we propose to use the instrumental variable that achieves intervention without the need for confounder observation. We term our robust training method as Causal intervention by instrumental Variable (CiiV). It has a differentiable retinotopic sampling layer and a consistency loss, which is stable and guaranteed not to suffer from gradient obfuscation. Extensive experiments on a wide spectrum of attackers and settings applied in MNIST, CIFAR-10, and mini-ImageNet datasets empirically demonstrate that CiiV is robust to adaptive attacks.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا