Do you want to publish a course? Click here

Efficient Autotuning of Hyperparameters in Approximate Nearest Neighbor Search

77   0   0.0 ( 0 )
 Added by Ville Hyv\\\"onen
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Approximate nearest neighbor algorithms are used to speed up nearest neighbor search in a wide array of applications. However, current indexing methods feature several hyperparameters that need to be tuned to reach an acceptable accuracy--speed trade-off. A grid search in the parameter space is often impractically slow due to a time-consuming index-building procedure. Therefore, we propose an algorithm for automatically tuning the hyperparameters of indexing methods based on randomized space-partitioning trees. In particular, we present results using randomized k-d trees, random projection trees and randomized PCA trees. The tuning algorithm adds minimal overhead to the index-building process but is able to find the optimal hyperparameters accurately. We demonstrate that the algorithm is significantly faster than existing approaches, and that the indexing methods used are competitive with the state-of-the-art methods in query time while being faster to build.



rate research

Read More

209 - Xian Wu , Moses Charikar 2020
Embedding into hyperbolic space is emerging as an effective representation technique for datasets that exhibit hierarchical structure. This development motivates the need for algorithms that are able to effectively extract knowledge and insights from datapoints embedded in negatively curved spaces. We focus on the problem of nearest neighbor search, a fundamental problem in data analysis. We present efficient algorithmic solutions that build upon established methods for nearest neighbor search in Euclidean space, allowing for easy adoption and integration with existing systems. We prove theoretical guarantees for our techniques and our experiments demonstrate the effectiveness of our approach on real datasets over competing algorithms.
In the $(1+varepsilon,r)$-approximate near-neighbor problem for curves (ANNC) under some distance measure $delta$, the goal is to construct a data structure for a given set $mathcal{C}$ of curves that supports approximate near-neighbor queries: Given a query curve $Q$, if there exists a curve $Cinmathcal{C}$ such that $delta(Q,C)le r$, then return a curve $Cinmathcal{C}$ with $delta(Q,C)le(1+varepsilon)r$. There exists an efficient reduction from the $(1+varepsilon)$-approximate nearest-neighbor problem to ANNC, where in the former problem the answer to a query is a curve $Cinmathcal{C}$ with $delta(Q,C)le(1+varepsilon)cdotdelta(Q,C^*)$, where $C^*$ is the curve of $mathcal{C}$ closest to $Q$. Given a set $mathcal{C}$ of $n$ curves, each consisting of $m$ points in $d$ dimensions, we construct a data structure for ANNC that uses $ncdot O(frac{1}{varepsilon})^{md}$ storage space and has $O(md)$ query time (for a query curve of length $m$), where the similarity between two curves is their discrete Frechet or dynamic time warping distance. Our method is simple to implement, deterministic, and results in an exponential improvement in both query time and storage space compared to all previous bounds. Further, we also consider the asymmetric version of ANNC, where the length of the query curves is $k ll m$, and obtain essentially the same storage and query bounds as above, except that $m$ is replaced by $k$. Finally, we apply our method to a version of approximate range counting for curves and achieve similar bounds.
We propose a generic feature compression method for Approximate Nearest Neighbor Search (ANNS) problems, which speeds up existing ANNS methods in a plug-and-play manner. Specifically, we propose a new network structure called Compression Network with Transformer (CNT) to compress the feature into a low dimensional space, and an inhomogeneous neighborhood relationship preserving (INRP) loss that aims to maintain high search accuracy. In CNT, we use multiple compression projections to cast the feature into many low dimensional spaces, and then use transformer to globally optimize these projections such that the features are well compressed following the guidance from our loss function. The loss function is designed to assign high weights on point pairs that are close in original feature space, and keep their distances in projected space. Keeping these distances helps maintain the eventual top-k retrieval accuracy, and down weighting others creates room for feature compression. In experiments, we run our compression method on public datasets, and use the compressed features in graph based, product quantization and scalar quantization based ANNS solutions. Experimental results show that our compression method can significantly improve the efficiency of these methods while preserves or even improves search accuracy, suggesting its broad potential impact on real world applications.
We formulate approximate nearest neighbor (ANN) search as a multi-label classification task. The implications are twofold. First, tree-based indexes can be searched more efficiently by interpreting them as models to solve this task. Second, in addition to index structures designed specifically for ANN search, any type of classifier can be used as an index.
We consider the problem of recovering clustered sparse signals with no prior knowledge of the sparsity pattern. Beyond simple sparsity, signals of interest often exhibits an underlying sparsity pattern which, if leveraged, can improve the reconstruction performance. However, the sparsity pattern is usually unknown a priori. Inspired by the idea of k-nearest neighbor (k-NN) algorithm, we propose an efficient algorithm termed approximate message passing with nearest neighbor sparsity pattern learning (AMP-NNSPL), which learns the sparsity pattern adaptively. AMP-NNSPL specifies a flexible spike and slab prior on the unknown signal and, after each AMP iteration, sets the sparse ratios as the average of the nearest neighbor estimates via expectation maximization (EM). Experimental results on both synthetic and real data demonstrate the superiority of our proposed algorithm both in terms of reconstruction performance and computational complexity.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا