No Arabic abstract
The properties of Kitaev materials are attracting ever increasing attention owing to their exotic properties. In realistic two-dimensional materials, Kitaev interaction is often accompanied by the Dzyloshinskii-Moriya interaction, which poses a challenge of distinguishing their magnitude separately. In this work, we demonstrate that it can be done by accessing magnonic transport properties. By studying honeycomb ferromagnets exhibiting Dzyaloshinskii-Moriya and Kitaev interactions simultaneously, we reveal non-trivial magnonic topological properties accompanied by intricate magnonic transport characteristics as given by thermal Hall and magnon Nernst effects. We also investigate the effect of a magnetic field, showing that it does not only break the symmetry of the system but also brings drastic modifications to magnonic topological transport properties, which serve as hallmarks of the relative strength of anisotropic exchange interactions. Based on our findings, we suggest strategies to estimate the importance of Kitaev interactions in real materials.
We study the interplay between the Kitaev and Ising interactions on both ladder and two dimensional lattices. We show that the ground state of the Kitaev ladder is a symmetry-protected topological (SPT) phase, which is protected by a $mathbb{Z}_2 times mathbb{Z}_2$ symmetry. It is confirmed by the degeneracy of the entanglement spectrum and non-trivial phase factors (inequivalent projective representations of the symmetries), which are obtained within infinite matrix-product representation of numerical density matrix renormalization group. We derive the effective theory to describe the topological phase transition on both ladder and two-dimensional lattices, which is given by the transverse field Ising model with/without next-nearest neighbor coupling. The ladder has three phases, namely, the Kitaev SPT, symmetry broken ferro/antiferromagnetic order and classical spin-liquid. The non-zero quantum critical point and its corresponding central charge are provided by the effective theory, which are in full agreement with the numerical results, i.e., the divergence of entanglement entropy at the critical point, change of the entanglement spectrum degeneracy and a drop in the ground-state fidelity. The central charge of the critical points are either c=1 or c=2, with the magnetization and correlation exponents being 1/4 and 1/2, respectively. In the absence of frustration, the 2D lattice shows a topological phase transition from the $mathbb{Z}_2$ spin-liquid state to the long-range ordered Ising phase at finite ratio of couplings, while in the presence of frustration, an order-by-disorder transition is induced by the Kitaev term. The 2D classical spin-liquid phase is unstable against the addition of Kitaev term toward an ordered phase before the transition to the $mathbb{Z}_2$ spin-liquid state.
We consider the quasi-two-dimensional pseudo-spin-1/2 Kitaev - Heisenberg model proposed for A2IrO3 (A=Li, Na) compounds. The spin-wave excitation spectrum, the sublattice magnetization, and the transition temperatures are calculated in the random phase approximation (RPA) for four different ordered phases, observed in the parameter space of the model: antiferomagnetic, stripe, ferromagnetic, and zigzag phases. The N{e}el temperature and temperature dependence of the sublattice magnetization are compared with the experimental data on Na2IrO3.
It is widely accepted that topological superconductors can only have an effective interpretation in terms of curved geometry rather than gauge fields due to their charge neutrality. This approach is commonly employed in order to investigate their properties, such as the behaviour of their energy currents. Nevertheless, it is not known how accurately curved geometry can describe actual microscopic models. Here, we demonstrate that the low-energy properties of the Kitaev honeycomb lattice model, a topological superconductor that supports localised Majorana zero modes at its vortex excitations, are faithfully described in terms of Riemann-Cartan geometry. In particular, we show analytically that the continuum limit of the model is given in terms of the Majorana version of the Dirac Hamiltonian coupled to both curvature and torsion. We numerically establish the accuracy of the geometric description for a wide variety of couplings of the microscopic model. Our work opens up the opportunity to accurately predict dynamical properties of the Kitaev model from its effective geometric description.
A preponderance of evidence suggests that the ground state of the nearest-neighbor $S = 1/2$ antiferromagnetic Heisenberg model on the kagome lattice is a gapless spin liquid. Many candidate materials for the realization of this model possess in addition a Dzyaloshinskii-Moriya (DM) interaction. We study this system by tensor-network methods and deduce that a weak but finite DM interaction is required to destabilize the gapless spin-liquid state. The critical magnitude, $D_c/J simeq 0.012(2)$, lies well below the DM strength proposed in the kagome material herbertsmithite, indicating a need to reassess the apparent spin-liquid behavior reported in this system.
In this work we investigate whether the Kitaev honeycomb model can serve as a starting point to realize the intriguing physics of the Sachdev-Ye-Kitaev model. The starting point is to strain the system which leads to flat bands reminiscent of Landau levels, thereby quenching the kinetic energy. The presence of weak residual perturbations, such as Heisenberg interactions and the $gamma$-term, creates effective interactions between the Majorana modes when projected into the flux-free sector. Taking into account a disordered boundary results in an interaction that is effectively random. While we find that in a strained nearest-neighbor Kitaev honeycomb model it is unlikely to find the Sachdev-Ye-Kitaev model, it appears possible to realize a bipartite variant with similar properties. We furthermore argue that next-nearest-neighbor terms can lead to actual Sachdev-Ye-Kitaev physics, if large enough.