Do you want to publish a course? Click here

Multirotor-assisted measurements of wind-induced drift of irregularly shaped objects in aquatic environments

114   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ocean hazardous spills and search and rescue incidents are more prevalent as maritime activities increase across all sectors of society. However, emergency response time remains a factor due to a lack of information to accurately forecast the location of small objects. Existing drifting characterization techniques are limited to objects whose drifting properties are not affected by on-board wind and surface current sensors. To address this challenge, we study the application of multirotor unmanned aerial systems (UAS), and embedded navigation technology, for on-demand wind velocity and surface flow measurements to characterize drifting properties of small objects. An off-the-shelf quadrotor was used to measure wind velocity at 10 m above surface level near a drifting object. We also leveraged UAS-grade attitude and heading reference systems and GPS antennas to build water-proof tracking modules that record the position and orientation, as well of translational and rotational velocities, of objects drifting in water. The quadrotor and water-proof tracking modules were deployed during field experiments conducted in lake and ocean environments to characterize the leeway parameters of manikins simulating a person in water. Leeway parameters were found to be an order of magnitude within previous estimates derived using conventional wind and surface current observations. We also determined that multirotor UAS and water-proof tracking modules can provide accurate and high-resolution ambient information that is critical to understand how changes in orientation affect the downwind displacement and jibing characteristics of small objects floating in water. These findings support further development and application of multirotor UAS technology for leeway characterization and understanding the effect of an objects downwind-relative orientation on its drifting characteristics.



rate research

Read More

A formulation is developed to assimilate ocean-wave data into the Numerical Flow Analysis (NFA) code. NFA is a Cartesian-based implicit Large-Eddy Simulation (LES) code with Volume of Fluid (VOF) interface capturing. The sequential assimilation of data into NFA permits detailed analysis of ocean-wave physics with higher bandwidths than is possible using either other formulations, such as High-Order Spectral (HOS) methods, or field measurements. A framework is provided for assimilating the wavy and vortical portions of the flow. Nudging is used to assimilate wave data at low wavenumbers, and the wave data at high wavenumbers form naturally through nonlinear interactions, wave breaking, and wind forcing. Similarly, the vertical profiles of the mean vortical flow in the wind and the wind drift are nudged, and the turbulent fluctuations are allowed to form naturally. As a demonstration, the results of a HOS of a JONSWAP wave spectrum are assimilated to study short-crested seas in equilibrium with the wind. Log profiles are assimilated for the mean wind and the mean wind drift. The results of the data assimilations are (1) Windrows form under the action of breaking waves and the formation of swirling jets; (2) The crosswind and cross drift meander; (3) Swirling jets are organized into Langmuir cells in the upper oceanic boundary layer; (4) Swirling jets are organized into wind streaks in the lower atmospheric boundary layer; (5) The length and time scales of the Langmuir cells and the wind streaks increase away from the free surface; (6) Wave growth is very dynamic especially for breaking waves; (7) The effects of the turbulent fluctuations in the upper ocean on wave growth need to be considered together with the turbulent fluctuations in the lower atmosphere; and (8) Extreme events are most likely when waves are not in equilibrium.
A method for conducting leeway field experiments to establish the drift properties of small objects (0.1-25 m) is described. The objective is to define a standardized and unambiguous procedure for condensing the drift properties down to a set of coefficients that may be incorporated into existing stochastic trajectory forecast models for drifting objects of concern to search and rescue operations and other activities involving vessels lost at sea such as containers with hazardous material. An operational definition of the slip or wind and wave-induced motion of a drifting object relative to the ambient current is proposed. This definition taken together with a strict adherence to 10 m wind speed allows us to refer unambiguously to the leeway of a drifting object. We recommend that all objects if possible be studied using what we term the direct method, where the objects leeway is studied directly using an attached current meter. We divide drifting objects into four categories, depending on their size. For the smaller objects (less than 0.5 m), an indirect method of measuring the objects motion relative to the ambient current must be used. For larger objects, direct measurement of the motion through the near-surface water masses is strongly recommended. Larger objects are categorized according to the ability to attach current meters and wind monitoring systems to them. The leeway field method proposed here is illustrated with results from field work where three objects were studied in their distress configuration; a 1:3.3 sized model of a 40-ft Shipping container, a World War II mine and a 220 l (55-gallon) oil drum.
Conventionally neutral atmospheric boundary layers (CNBLs), which are characterized with zero surface potential temperature flux and capped by an inversion of potential temperature, are frequently encountered in nature. Therefore, predicting the wind speed profiles of CNBLs is relevant for weather forecasting, climate modeling, and wind energy applications. However, previous attempts to predict the velocity profiles in CNBLs have had limited success due to the complicated interplay between buoyancy, shear, and Coriolis effects. Here, we utilize ideas from the classical Monin-Obukhov similarity theory in combination with a local scaling hypothesis to derive an analytic expression for the stability correction function $psi = -c_psi (z/L)^{1/2}$, where $c_psi = 4.2$ is an empirical constant, $z$ is the height above ground, and $L$ is the local Obukhov length based on potential temperature flux at that height, for CNBLs. An analytic expression for this flux is also derived using dimensional analysis and a perturbation method approach. We find that the derived profile agrees excellently with the velocity profile in the entire boundary layer obtained from high-fidelity large eddy simulations of typical CNBLs.
105 - Christophe Eloy 2011
Examining botanical trees, Leonardo da Vinci noted that the total cross-section of branches is conserved across branching nodes. In this Letter, it is proposed that this rule is a consequence of the tree skeleton having a self-similar structure and the branch diameters being adjusted to resist wind-induced loads.
As wind energy continues to expand, increased interaction between wind farms and their surroundings can be expected. Using natural snowfall to visualize the air flow in the wake of a utility-scale wind turbine at unprecedented spatio-temporal resolution, we observe intermittent periods of strong interaction between the wake and the ground surface and quantify the momentum flux during these periods. Significantly, we identify two turbine operational-dependent pathways that lead to these periods of increased wake-ground interaction. Data from a nearby meteorological tower provides further insights into the strength and persistence of the enhanced flux for each pathway under different atmospheric conditions. These pathways allow us to resolve discrepancies between previous conflicting studies on the impact of wind turbines on surface fluxes. Furthermore, we use our results to generate a map of the potential impact of wind farms on surface momentum flux throughout the Continental United States, providing a valuable resource for wind farm siting decisions. These findings have implications for agriculture in particular, as crop growth is significantly affected by surface fluxes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا