No Arabic abstract
This paper presents some results concerning the size of magnetic fields that support zero modes for the three dimensional Dirac equation and related problems for spinor equations. It is a well known fact that for the Schrodinger in three dimensions to have a negative energy bound state, the 3/2- norm of the potential has to be greater than the Sobolev constant. We prove an analogous result for the existence of zero modes, namely that the 3/2 - norm of the magnetic field has to greater than twice the Sobolev constant. The novel point here is that the spinorial nature of the wave function is crucial. It leads to an improved diamagnetic inequality from which the bound is derived. While the results are probably not sharp, other equations are analyzed where the results are indeed optimal.
In this work we study Dirac operators on two-dimensional domains coupled to a magnetic field perpendicular to the plane. We focus on the infinite-mass boundary condition (also called MIT bag condition). In the case of bounded domains, we establish the asymptotic behavior of the low-lying (positive and negative) energies in the limit of strong magnetic field. Moreover, for a constant magnetic field $B$, we study the problem on the half-plane and find that the Dirac operator has continuous spectrum except for a gap of size $a_0sqrt{B}$, where $a_0in (0,sqrt{2})$ is a universal constant. Remarkably, this constant characterizes certain energies of the system in a bounded domain as well. We discuss how these findings, together with our previous work, give a fairly complete description of the eigenvalue asymptotics of magnetic two-dimensional Dirac operators under general boundary conditions.
This paper is devoted to the symmetry and symmetry breaking properties of a two-dimensional magnetic Schr{o}dinger operator involving an Aharonov-Bohm magnetic vector potential. We investigate the symmetry properties of the optimal potential for the corresponding magnetic Keller-Lieb-Thir-ring inequality. We prove that this potential is radially symmetric if the intensity of the magnetic field is below an explicit threshold, while symmetry is broken above a second threshold corresponding to a higher magnetic field. The method relies on the study of the magnetic kinetic energy of the wave function and amounts to study the symmetry properties of the optimal functions in a magnetic Hardy-Sobolev interpolation inequality. We give a quantified range of symmetry by a non-perturbative method. To establish the symmetry breaking range, we exploit the coupling of the phase and of the modulus and also obtain a quantitative result.
The aim of this paper is to study, in dimensions 2 and 3, the pure-power non-linear Schrodinger equation with an external uniform magnetic field included. In particular, we derive a general criteria on the initial data and the power of the non-linearity so that the corresponding solution blows up in finite time, and we show that the time for blow up to occur decreases as the strength of the magnetic field increases. In addition, we also discuss some observations about Strichartz estimates in 2 dimensions for the Mehler kernel, as well as similar blow-up results for the non-linear Pauli equation.
We consider co-rotational wave maps from Minkowski space in $d+1$ dimensions to the $d$-sphere. Recently, Bizon and Biernat found explicit self-similar solutions for each dimension $dgeq 4$. We give a rigorous proof for the mode stability of these self-similar wave maps.
We investigate a time-harmonic wave problem in a waveguide. We work at low frequency so that only one mode can propagate. It is known that the scattering matrix exhibits a rapid variation for real frequencies in a vicinity of a complex resonance located close to the real axis. This is the so-called Fano resonance phenomenon. And when the geometry presents certain properties of symmetry, there are two different real frequencies such that we have either $R=0$ or $T=0$, where $R$ and $T$ denote the reflection and transmission coefficients. In this work, we prove that without the assumption of symmetry of the geometry, quite surprisingly, there is always one real frequency for which we have $T=0$. In this situation, all the energy sent in the waveguide is backscattered. However in general, we do not have $R=0$ in the process. We provide numerical results to illustrate our theorems.