Do you want to publish a course? Click here

The Intriguing Flow Behavior of Soft Materials

62   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Materials that can be deformed by thermal stresses at room temperature are called soft materials. Colloidal suspensions comprising solid particles evenly distributed in a fluid phase (smoke, fog, ink and milk, for example), emulsions(mayonnaise, lotions and creams), pastes (tomato ketchup, toothpaste), granular media (a bag of rice or sand), and polymer gels (polysaccharide gels) can be categorized as soft materials and are ubiquitous both at home and in industrial setups. Soft materials exhibit rich flow and deformation behaviors characterized by intriguing properties such as shear-thinning or thixotropy, shear-thickening or dilatancy, non-zero normal and yield stresses, etc. This article explains some of the mysterious flow properties of soft materials.

rate research

Read More

65 - Randall D. Kamien 2002
We present an overview of the differential geometry of curves and surfaces using examples from soft matter as illustrations. The presentation requires a background only in vector calculus and is otherwise self-contained.
413 - Qing Xu , Ashish V. Orpe , 2007
We investigate the dynamics of a partially saturated grain-liquid mixture with a rotating drum apparatus. The drum is partially filled with the mixture and then rotated about its horizontal axis. We focus on the continous avalanching regime and measure the impact of volume fraction and viscosity of the liquid on the dynamic surface angle. The inclination angle of the surface is observed to increase sharply to a peak and then decrease as a function of liquid volume fraction. The height of the peak is observed to increase with rotation rate. For higher liquid volume fractions, the inclination angle of the surface can decrease with viscosity before increasing. The viscosity where the minima occurs decreases with the rotation rate of the drum. Limited measurements of the flow depth were made, and these were observed to show only fractional changes with volume fraction and rotation speeds. We show that the qualitative features of our observations can be understood by analyzing the effect of lubrication forces on the timescale over which particles come in contact.
Soft glassy materials are out of thermodynamic equilibrium and show time dependent slowing down of the relaxation dynamics. Under such situation these materials follow Boltzmann superposition principle only in the effective time domain, wherein time dependent relaxation processes are scaled by a constant relaxation time. In this work we extend effective time framework to successfully demonstrate time - temperature superposition of creep and stress relaxation data of a model soft glassy system comprised of clay suspension. Such superposition is possible when average relaxation time of the material changes with time and temperature without affecting shape of the spectrum. We show that variation in relaxation time as a function of temperature facilitates prediction of long and short time rheological behavior through time - temperature superposition from the experiments carried out over experimentally accessible timescales.
We present a comprehensive review of the physical behavior of yield stress materials in soft condensed matter, which encompass a broad range of materials from colloidal assemblies and gels to emulsions and non-Brownian suspensions. All these disordered materials display a nonlinear flow behavior in response to external mechanical forces, due to the existence of a finite force threshold for flow to occur: the yield stress. We discuss both the physical origin and rheological consequences associated with this nonlinear behavior, and give an overview of experimental techniques available to measure the yield stress. We discuss recent progress concerning a microscopic theoretical description of the flow dynamics of yield stress materials, emphasizing in particular the role played by relaxation time scales, the interplay between shear flow and aging behavior, the existence of inhomogeneous shear flows and shear bands, wall slip, and non-local effects in confined geometries.
Soft materials with a liquid component are an emerging paradigm in materials design. The incorporation of a liquid phase, such as water, liquid metals, or complex fluids, into solid materials imparts unique properties and characteristics that emerge as a result of the dramatically different properties of the liquid and solid. Especially in recent years, this has led to the development and study of a range of novel materials with new functional responses, with applications in topics including soft electronics, soft robotics, 3D printing, wet granular systems and even in cell biology. Here we provide a review of solid-liquid composites, broadly defined as a material system with at least one, phase-separated liquid component, and discuss their morphology and fabrication approaches, their emergent mechanical properties and functional response, and the broad range of their applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا