Do you want to publish a course? Click here

Arnold Tongues in Oscillator Systems with Nonuniform Spatial Driving

41   0   0.0 ( 0 )
 Added by Alex Golden
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Nonlinear oscillator systems are ubiquitous in biology and physics, and their control is a practical problem in many experimental systems. Here we study this problem in the context of the two models of spatially-coupled oscillators: the complex Ginzburg-Landau equation (CGLE) and a generalization of the CGLE in which oscillators are coupled through an external medium (emCGLE). We focus on external control drives that vary in both space and time. We find that the spatial distribution of the drive signal controls the frequency ranges over which oscillators synchronize to the drive and that boundary conditions strongly influence synchronization to external drives for the CGLE. Our calculations also show that the emCGLE has a low density regime in which a broad range of frequencies can be synchronized for low drive amplitudes. We study the bifurcation structure of these models and find that they are very similar to results for the driven Kuramoto model, a system with no spatial structure. We conclude by discussing the implications of our results for controlling coupled oscillator systems such as the social amoebae emph{Dictyostelium} and populations of BZ catalytic particles using spatially structured external drives.

rate research

Read More

Frequency locking in forced oscillatory systems typically occurs in V-shaped domains in the plane spanned by the forcing frequency and amplitude, the so-called Arnold tongues. Here, we show that if the medium is spatially extended and monotonically heterogeneous, e.g., through spatially-dependent natural frequency, the resonance tongues can also display U and W shapes; to the latter, we refer as inverse camel shape. We study the generic forced complex Ginzburg-Landau equation for damped oscillations under parametric forcing and, using linear stability analysis and numerical simulations, uncover the mechanisms that lead to these distinct shapes. Additionally, we study the effects of discretization, by exploring frequency locking of oscillators chains. Since we study a normal-form equation, the results are model-independent near the onset of oscillations, and, therefore, applicable to inherently heterogeneous systems in general, such as the cochlea. The results are also applicable to controlling technological performances in various contexts, such as arrays of mechanical resonators, catalytic surface reactions, and nonlinear optics.
108 - Gautam C. Sethia , Abhijit Sen , 2008
We investigate chimera states in a ring of identical phase oscillators coupled in a time-delayed and spatially non-local fashion. We find novel clustered chimera states that have spatially distributed phase coherence separated by incoherence with adjacent coherent regions in anti-phase. The existence of such time-delay induced phase clustering is further supported through solutions of a generalized functional self-consistency equation of the mean field. Our results highlight an additional mechanism for cluster formation that may find wider practical applications.
Using a homotopic family of boundary eigenvalue problems for the mean-field $alpha^2$-dynamo with helical turbulence parameter $alpha(r)=alpha_0+gammaDeltaalpha(r)$ and homotopy parameter $beta in [0,1]$, we show that the underlying network of diabolical points for Dirichlet (idealized, $beta=0$) boundary conditions substantially determines the choreography of eigenvalues and thus the character of the dynamo instability for Robin (physically realistic, $beta=1$) boundary conditions. In the $(alpha_0,beta,gamma)-$space the Arnold tongues of oscillatory solutions at $beta=1$ end up at the diabolical points for $beta=0$. In the vicinity of the diabolical points the space orientation of the 3D tongues, which are cones in first-order approximation, is determined by the Krein signature of the modes involved in the diabolical crossings at the apexes of the cones. The Krein space induced geometry of the resonance zones explains the subtleties in finding $alpha$-profiles leading to spectral exceptional points, which are important ingredients in recent theories of polarity reversals of the geomagnetic field.
We explore the consequences of incorporating parity and time reversal ($mathcal{PT}$) symmetries on the dynamics of nonreciprocal light propagation exhibited by a class of nonuniform periodic structures known as chirped $mathcal{PT}$-symmetric fiber Bragg gratings (FBGs). The interplay among various grating parameters such as chirping, detuning, nonlinearities, and gain/loss gives rise to unique bi- and multi-stable states in the unbroken as well as broken $mathcal{PT}$-symmetric regimes. The role of chirping on the steering dynamics of the hysteresis curve is influenced by the type of nonlinearities and the nature of detuning parameter. Also, incident directions of the input light robustly impact the steering dynamics of bistable and multistable states both in the unbroken and broken $mathcal{PT}$-symmetric regimes. When the light launching direction is reversed, critical stable states are found to occur at very low intensities which opens up a new avenue for an additional way of controlling light with light. We also analyze the phenomenon of unidirectional wave transport and the reflective bi- and multi-stable characteristics at the so-called $mathcal{PT}$-symmetry breaking point.
The present work studies the influence of nonlocal spatial coupling on the existence of localized structures in 1-dimensional extended systems. We consider systems described by a real field with a nonlocal coupling that has a linear dependence on the field. Leveraging spatial dynamics we provide a general framework to understand the effect of the nonlocality on the shape of the fronts connecting two stable states. In particular we show that non local terms can induce spatial oscillations in the front tails, allowing for the creation of localized structures, emerging from pinning between two fronts. In parameter space the region where fronts are oscillatory is limited by three transitions: the modulational instability of the homogeneous state, the Belyakov-Devaney transition in which monotonic fronts acquire spatial oscillations with infinite wavelength, and a crossover in which monotonically decaying fronts develop oscillations with a finite wavelength. We show how these transitions are organized by codimension 2 and 3 point s and illustrate how by changing the parameters of the nonlocal coupling it is possible to bring the system into the region where localized structures can be formed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا