Do you want to publish a course? Click here

Formation of localized structures in bistable systems through nonlocal spatial coupling I: General framework

105   0   0.0 ( 0 )
 Added by Manuel A. Matias
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The present work studies the influence of nonlocal spatial coupling on the existence of localized structures in 1-dimensional extended systems. We consider systems described by a real field with a nonlocal coupling that has a linear dependence on the field. Leveraging spatial dynamics we provide a general framework to understand the effect of the nonlocality on the shape of the fronts connecting two stable states. In particular we show that non local terms can induce spatial oscillations in the front tails, allowing for the creation of localized structures, emerging from pinning between two fronts. In parameter space the region where fronts are oscillatory is limited by three transitions: the modulational instability of the homogeneous state, the Belyakov-Devaney transition in which monotonic fronts acquire spatial oscillations with infinite wavelength, and a crossover in which monotonically decaying fronts develop oscillations with a finite wavelength. We show how these transitions are organized by codimension 2 and 3 point s and illustrate how by changing the parameters of the nonlocal coupling it is possible to bring the system into the region where localized structures can be formed.



rate research

Read More

We study the influence of a linear nonlocal spatial coupling on the interaction of fronts connecting two equivalent stable states in the prototypical 1-D real Ginzburg-Landau equation. While for local coupling the fronts are always monotonic and therefore the dynamical behavior leads to coarsening and the annihilation of pairs of fronts, nonlocal terms can induce spatial oscillations in the front, allowing for the creation of localized structures, emerging from pinning between two fronts. We show this for three different nonlocal influence kernels. The first two, mod-exponential and Gaussian, are positive-definite and decay exponentially or faster, while the third one, a Mexican-hat kernel, is not positive definite.
We present an unifying description of a new class of localized states, appearing as large amplitude peaks nucleating over a pattern of lower amplitude. Localized states are pinned over a lattice spontaneously generated by the system itself. We show that the phenomenon is generic and requires only the coexistence of two spatially periodic states. At the onset of the spatial bifurcation, a forced amplitude equation is derived for the critical modes, which accounts for the appearance of localized peaks
109 - A. Yadav , D. A. Browne 2005
We present a general method of analyzing the influence of finite size and boundary effects on the dynamics of localized solutions of non-linear spatially extended systems. The dynamics of localized structures in infinite systems involve solvability conditions that require projection onto a Goldstone mode. Our method works by extending the solvability conditions to finite sized systems, by incorporating the finite sized modifications of the Goldstone mode and associated nonzero eigenvalue. We apply this method to the special case of non-equilibrium domain walls under the influence of Dirichlet boundary conditions in a parametrically forced complex Ginzburg Landau equation, where we examine exotic nonuniform domain wall motion due to the influence of boundary conditions.
We consider a phase-field model where the internal energy depends on the order parameter in a nonlocal way. Therefore, the resulting system consists of the energy balance equation coupled with a nonlinear and nonlocal ODE for the order parameter. Such system has been analyzed by several authors, in particular when the configuration potential is a smooth double-well function. More recently, in the case of a potential defined on (-1,1) and singular at the endpoints, the existence of a finite-dimensional global attractor has been proven. Here we examine both the case of smooth potentials as well as the case of physically realistic (e.g., logarithmic) singular potentials. We prove well-posedness results and the eventual global boundedness of solutions uniformly with respect to the initial data. In addition, we show that the separation property holds in the case of singular potentials. Thanks to these results, we are able to demonstrate the existence of a finite-dimensional attractors in the present cases as well.
We investigate the existence and stability of gap vortices and multi-pole gap solitons in a Kagome lattice with a defocusing nonlinearity both in a discrete case and in a continuum one with periodic external modulation. In particular, predictions are made based on expansion around a simple and analytically tractable anti-continuum (zero coupling) limit. These predictions are then confirmed for a continuum model of an optically-induced Kagome lattice in a photorefractive crystal obtained by a continuous transformation of a honeycomb lattice.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا