Do you want to publish a course? Click here

Dark Energy Survey Year 3 Results: Deep Field Optical + Near-Infrared Images and Catalogue

126   0   0.0 ( 0 )
 Added by Ami Choi
 Publication date 2020
  fields Physics
and research's language is English
 Authors W. G. Hartley




Ask ChatGPT about the research

We describe the Dark Energy Survey (DES) Deep Fields, a set of images and associated multi-wavelength catalogue ($ugrizJHKs$) built from Dark Energy Camera (DECam) and Visible and Infrared Survey Telescope for Astronomy (VISTA) data. The DES Deep Fields comprise 11 fields (10 DES supernova fields plus COSMOS), with a total area of $sim30~$ square degrees in $ugriz$ bands and reaching a maximum $i$-band depth of 26.75 (AB, $10sigma$, 2). We present a catalogue for the DES 3-year cosmology analysis of those four fields with full 8-band coverage, totalling $5.88~$ sq. deg. after masking. The catalogue is constructed in order to provide a sample of effectively noiseless galaxies (S/N $>sqrt{10}times$ their equivalents in the main DES survey), to be used as a prior on the population of objects observed in the DES and their moments in light distribution, a source of high-quality redshift information in constructing source galaxy redshift distributions for weak lensing analyses, and a host of deep extragalactic science. Numbering $2.8~$million objects ($1.6~$million post masking), our catalogue is drawn from images coadded to consistent depths of $r=25.7, i=25, z=24.3$ mag. We use a new model-fitting code, built upon established methods, to deblend sources and ensure consistent colours across the $u$-band to $Ks$-band wavelength range. We further detail the tight control we maintain over the point-spread function modelling required for the model fitting, astrometry and consistency of photometry between the four fields. The catalogue allows us to perform a careful star-galaxy separation and produces excellent photometric redshift performance (${rm NMAD} = 0.023$ at $i<23$). The Deep-Fields catalogue will be made available as part of the cosmology data products release, following the completion of the DES 3-year weak lensing and galaxy clustering cosmology work.



rate research

Read More

74 - M. Gatti , E. Sheldon , A. Amon 2020
We present and characterise the galaxy shape catalogue from the first 3 years of Dark Energy Survey (DES) observations, over an effective area of ~4143 deg$^2$ of the southern sky. We describe our data analysis process and our self-calibrating shear measurement pipeline METACALIBRATION, which builds and improves upon the pipeline used in the DES Year 1 analysis in several aspects. The DES Year 3 weak-lensing shape catalogue consists of 100,204,026 galaxies, measured in the $riz$ bands, resulting in a weighted source number density of $n_{rm eff} = 5.59$ gal/arcmin$ ^{2}$ and corresponding shape noise $sigma_e = 0.261$. We perform a battery of internal null tests on the catalogue, including tests on systematics related to the point-spread function (PSF) modelling, spurious catalogue B-mode signals, catalogue contamination, and galaxy properties.
158 - S. Everett 2020
We describe an updated calibration and diagnostic framework, Balrog, used to directly sample the selection and photometric biases of Dark Energy Surveys (DES) Year 3 (Y3) dataset. We systematically inject onto the single-epoch images of a random 20% subset of the DES footprint an ensemble of nearly 30 million realistic galaxy models derived from DES Deep Field observations. These augmented images are analyzed in parallel with the original data to automatically inherit measurement systematics that are often too difficult to capture with traditional generative models. The resulting object catalog is a Monte Carlo sampling of the DES transfer function and is used as a powerful diagnostic and calibration tool for a variety of DES Y3 science, particularly for the calibration of the photometric redshifts of distant source galaxies and magnification biases of nearer lens galaxies. The recovered Balrog injections are shown to closely match the photometric property distributions of the Y3 GOLD catalog, particularly in color, and capture the number density fluctuations from observing conditions of the real data within 1% for a typical galaxy sample. We find that Y3 colors are extremely well calibrated, typically within ~1-8 millimagnitudes, but for a small subset of objects we detect significant magnitude biases correlated with large overestimates of the injected object size due to proximity effects and blending. We discuss approaches to extend the current methodology to capture more aspects of the transfer function and reach full coverage of the survey footprint for future analyses.
We describe the Dark Energy Survey (DES) photometric data set assembled from the first three years of science operations to support DES Year 3 cosmology analyses, and provide usage notes aimed at the broad astrophysics community. Y3 Gold improves on previous releases from DES, Y1 Gold and Data Release 1 (DES DR1), presenting an expanded and curated data set that incorporates algorithmic developments in image detrending and processing, photometric calibration, and object classification. Y3 Gold comprises nearly 5000 square degrees of grizY imaging in the south Galactic cap, including nearly 390 million objects, with depth reaching S/N ~ 10 for extended objects up to $i_{AB}sim 23.0$, and top-of-the-atmosphere photometric uniformity $< 3$ mmag. Compared to DR1, photometric residuals with respect to Gaia are reduced by $50%$, and per-object chromatic corrections are introduced. Y3 Gold augments DES DR1 with simultaneous fits to multi-epoch photometry for more robust galaxy color measurements and corresponding photometric redshift estimates. Y3 Gold features improved morphological star-galaxy classification with efficiency $>98%$ and purity $>99%$ for galaxies with $19 < i_{AB} < 22.5$. Additionally, it includes per-object quality information, and accompanying maps of the footprint coverage, masked regions, imaging depth, survey conditions, and astrophysical foregrounds that are used to select the cosmology analysis samples. This paper will be complemented by online resources.
We describe the creation, content, and validation of the Dark Energy Survey (DES) internal year-one cosmology data set, Y1A1 GOLD, in support of upcoming cosmological analyses. The Y1A1 GOLD data set is assembled from multiple epochs of DES imaging and consists of calibrated photometric zeropoints, object catalogs, and ancillary data products - e.g., maps of survey depth and observing conditions, star-galaxy classification, and photometric redshift estimates - that are necessary for accurate cosmological analyses. The Y1A1 GOLD wide-area object catalog consists of ~137 million objects detected in coadded images covering ~1800 deg$^2$ in the DES grizY filters. The 10{sigma} limiting magnitude for galaxies is g = 23.4, r = 23.2, i = 22.5, z = 21.8, and Y = 20.1. Photometric calibration of Y1A1 GOLD was performed by combining nightly zeropoint solutions with stellar-locus regression, and the absolute calibration accuracy is better than 2% over the survey area. DES Y1A1 GOLD is the largest photometric data set at the achieved depth to date, enabling precise measurements of cosmic acceleration at z $lesssim$ 1.
289 - E. Krause , X. Fang , S. Pandey 2021
This paper details the modeling pipeline and validates the baseline analysis choices of the DES Year 3 joint analysis of galaxy clustering and weak lensing (a so-called 3$times$2pt analysis). These analysis choices include the specific combination of cosmological probes, priors on cosmological and systematics parameters, model parameterizations for systematic effects and related approximations, and angular scales where the model assumptions are validated. We run a large number of simulated likelihood analyses using synthetic data vectors to test the robustness of our baseline analysis. We demonstrate that the DES Year 3 modeling pipeline, including the calibrated scale cuts, is sufficiently accurate relative to the constraining power of the DES Year 3 analyses. Our systematics mitigation strategy accounts for astrophysical systematics, such as galaxy bias, intrinsic alignments, source and lens magnification, baryonic effects, and source clustering, as well as for uncertainties in modeling the matter power spectrum, reduced shear, and estimator effects. We further demonstrate excellent agreement between two independently-developed modeling pipelines, and thus rule out any residual uncertainties due to the numerical implementation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا