In this report we provide an improvement of the significance adjustment from the FA*IR algorithm of Zehlike et al., which did not work for very short rankings in combination with a low minimum proportion $p$ for the protected group. We show how the minimum number of protected candidates per ranking position can be calculated exactly and provide a mapping from the continuous space of significance levels ($alpha$) to a discrete space of tables, which allows us to find $alpha_c$ using a binary search heuristic.
About 160 years ago, the Italian mathematician Fa`a di Bruno published two notes dealing about the now eponymous formula giving the derivative of any order of a composition of two functions. We reproduce here the two original notes, Fa`a di Bruno (1855, 1857), written respectively in Italian and in French, and propose a translation in English.
In this work, we define and solve the Fair Top-k Ranking problem, in which we want to determine a subset of k candidates from a large pool of n >> k candidates, maximizing utility (i.e., select the best candidates) subject to group fairness criteria. Our ranked group fairness definition extends group fairness using the standard notion of protected groups and is based on ensuring that the proportion of protected candidates in every prefix of the top-k ranking remains statistically above or indistinguishable from a given minimum. Utility is operationalized in two ways: (i) every candidate included in the top-$k$ should be more qualified than every candidate not included; and (ii) for every pair of candidates in the top-k, the more qualified candidate should be ranked above. An efficient algorithm is presented for producing the Fair Top-k Ranking, and tested experimentally on existing datasets as well as new datasets released with this paper, showing that our approach yields small distortions with respect to rankings that maximize utility without considering fairness criteria. To the best of our knowledge, this is the first algorithm grounded in statistical tests that can mitigate biases in the representation of an under-represented group along a ranked list.
We propose an effective model of strongly coupled gauge theory at finite temperature on $R^3$ in the presence of an infrared cutoff. It is constructed by considering the theory on $S^3$ with an infrared cutoff and then taking the size of the $S^3$ to infinity while keeping the cutoff fixed. This model reproduces various qualitative features expected from its gravity dual.
In this note, we adapt the procedure of the Long-Moody procedure to construct linear representations of welded braid groups. We exhibit the natural setting in this context and compute the first examples of representations we obtain thanks to this method. We take this way also the opportunity to review the few known linear representations of welded braid groups.
In a recent paper by L. A. Bokut, V. V. Chaynikov and K. P. Shum in 2007, Braid group $B_n$ is represented by Artin-Buraus relations. For such a representation, it is told that all other compositions can be checked in the same way. In this note, we support this claim and check all compositions.