Do you want to publish a course? Click here

Measuring structural parameters of crosslinked and entangled semiflexible polymer networks with single-filament tracing

286   0   0.0 ( 0 )
 Added by Tina H\\\"andler
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Single-filament tracing has been a valuable tool to directly determine geometrical and mechanical properties of entangled polymer networks. However, systematically verifying how the stiffness of the tracer filament or its molecular interactions with the surrounding network impacts the measurement of these parameters has not been possible with the established experimental systems. Here, we use mechanically programmable DNA nanotubes embedded in crosslinked and entangled F-actin networks, as well as in synthetic DNA networks, in order to measure fundamental, structural network properties like tube width and mesh size with respect to the stiffness of the tracers. While we confirm some predictions derived from models based purely on steric interactions, our results indicate that these models should be expanded to account for additional inter-filament interactions, thus describing the behavior of real polymer networks.



rate research

Read More

We present a method to generate realistic, three-dimensional networks of crosslinked semiflexible polymers. The free energy of these networks is obtained from the force-extension characteristics of the individual polymers and their persistent directionality through the crosslinks. A Monte Carlo scheme is employed to obtain isotropic, homogeneous networks that minimize the free energy, and for which all of the relevant parameters can be varied: the persistence length, the contour length as well as the crosslinking length may be chosen at will. We also provide an initial survey of the mechanical properties of our networks subjected to shear strains, showing them to display the expected non-linear stiffening behavior. Also, a key role for non-affinity and its relation to order in the network is uncovered.
We present a theoretical framework for the linear and nonlinear visco-elastic properties of reversibly crosslinked networks of semiflexible polymers. In contrast to affine models where network strain couples to the polymer end-to-end distance, in our model strain rather serves to locally distort the network structure. This induces bending modes in the polymer filaments, the properties of wich are slaved to the surrounding network structure. Specifically, we investigate the frequency-dependent linear rheology, in particular in combination with crosslink binding/unbinding processes. We also develop schematic extensions to describe the nonlinear response during creep measurements as well as during constant-strainrate ramps.
The cytoskeleton of eukaryotic cells provides mechanical support and governs intracellular transport. These functions rely on the complex mechanical properties of networks of semiflexible protein filaments. Recent theoretical interest has focused on mesoscopic properties of such networks and especially on the effect of local, non-affine bending deformations on mechanics. Here, we study the impact of local network deformations on the scale-dependent mobility of probe particles in entangled networks of semiflexible actin filaments by high-bandwidth microrheology. We find that micron-sized particles in these networks experience two opposing non-continuum elastic effects: entropic depletion reduces the effective network rigidity, while local non-affine deformations of the network substantially enhance the rigidity at low frequencies. We show that a simple model of lateral bending of filaments embedded in a viscoelastic background leads to a scaling regime for the apparent elastic modulus G(omega) sim omega^{9/16}, closely matching the experiments. These results provide quantitative evidence for how different a semiflexible polymer network can feel for small objects, and they demonstrate how non-affine bending deformations can be dominant for the mobility of vesicles and organelles in the cell.
Reversible crosslinking is a design paradigm for polymeric materials, wherein they are microscopically reinforced with chemical species that form transient crosslinks between the polymer chains. Besides the potential for self-healing, recent experimental work suggests that freely diffusing reversible crosslinks in polymer networks, such as gels, can enhance the toughness of the material without substantial change in elasticity. This presents the opportunity for making highly elastic materials that can be strained to a large extent before rupturing. Here, we employ Gaussian chain theory, molecular simulation, and polymer self-consistent field theory for networks to construct an equilibrium picture for how reversible crosslinks can toughen a polymer network without affecting its linear elasticity. Maximisation of polymer entropy drives the reversible crosslinks to bind preferentially near the permanent crosslinks in the network, leading to local molecular reinforcement without significant alteration of the network topology. In equilibrium conditions, permanent crosslinks share effectively the load with neighbouring reversible crosslinks, forming multi-functional crosslink points. The network is thereby globally toughened, while the linear elasticity is left largely unaltered. Practical guidelines are proposed to optimise this design in experiment, along with a discussion of key kinetic and timescale considerations.
We have developed a new technique to measure viscoelasticity in soft materials such as polymer solutions, by monitoring thermal fluctuations of embedded probe particles using laser interferometry in a microscope. Interferometry allows us to obtain power spectra of fluctuating beads from 0.1 Hz to 20 kHz, and with sub-nanometer spatial resolution. Using linear response theory, we determined the frequency-dependent loss and storage shear moduli up to frequencies on the order of a kHz. Our technique measures local values of the viscoelastic response, without actively straining the system, and is especially suited to soft biopolymer networks. We studied semiflexible F-actin solutions and, as a control, flexible polyacrylamide (PAAm) gels, the latter close to their gelation threshold. With small particles, we could probe the transition from macroscopic viscoelasticity to more complex microscopic dynamics. In the macroscopic limit we find shear moduli at 0.1 Hz of G=0.11 +/- 0.03 Pa and 0.17 +/- 0.07 Pa for 1 and 2 mg/ml actin solutions, close to the onset of the elastic plateau, and scaling behavior consistent with G(omega) as omega^(3/4) at higher frequencies. For polyacrylamide we measured plateau moduli of 2.0, 24, 100 and 280 Pa for crosslinked gels of 2, 2.5, 3 and 5% concentration (weight/volume) respectively, in agreement to within a factor of two with values obtained from conventional rheology. We also found evidence for scaling of G(omega) as omega^(1/2), consistent with the predictions of the Rouse model for flexible polymers.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا