Do you want to publish a course? Click here

Scale-dependent non-affine elasticity of semiflexible polymer networks

154   0   0.0 ( 0 )
 Added by Christoph Schmidt
 Publication date 2012
  fields Physics Biology
and research's language is English




Ask ChatGPT about the research

The cytoskeleton of eukaryotic cells provides mechanical support and governs intracellular transport. These functions rely on the complex mechanical properties of networks of semiflexible protein filaments. Recent theoretical interest has focused on mesoscopic properties of such networks and especially on the effect of local, non-affine bending deformations on mechanics. Here, we study the impact of local network deformations on the scale-dependent mobility of probe particles in entangled networks of semiflexible actin filaments by high-bandwidth microrheology. We find that micron-sized particles in these networks experience two opposing non-continuum elastic effects: entropic depletion reduces the effective network rigidity, while local non-affine deformations of the network substantially enhance the rigidity at low frequencies. We show that a simple model of lateral bending of filaments embedded in a viscoelastic background leads to a scaling regime for the apparent elastic modulus G(omega) sim omega^{9/16}, closely matching the experiments. These results provide quantitative evidence for how different a semiflexible polymer network can feel for small objects, and they demonstrate how non-affine bending deformations can be dominant for the mobility of vesicles and organelles in the cell.



rate research

Read More

We present a method to generate realistic, three-dimensional networks of crosslinked semiflexible polymers. The free energy of these networks is obtained from the force-extension characteristics of the individual polymers and their persistent directionality through the crosslinks. A Monte Carlo scheme is employed to obtain isotropic, homogeneous networks that minimize the free energy, and for which all of the relevant parameters can be varied: the persistence length, the contour length as well as the crosslinking length may be chosen at will. We also provide an initial survey of the mechanical properties of our networks subjected to shear strains, showing them to display the expected non-linear stiffening behavior. Also, a key role for non-affinity and its relation to order in the network is uncovered.
We present a theory for the elasticity of cross-linked stiff polymer networks. Stiff polymers, unlike their flexible counterparts, are highly anisotropic elastic objects. Similar to mechanical beams stiff polymers easily deform in bending, while they are much stiffer with respect to tensile forces (``stretching). Unlike in previous approaches, where network elasticity is derived from the stretching mode, our theory properly accounts for the soft bending response. A self-consistent effective medium approach is used to calculate the macroscopic elastic moduli starting from a microscopic characterization of the deformation field in terms of ``floppy modes -- low-energy bending excitations that retain a high degree of non-affinity. The length-scale characterizing the emergent non-affinity is given by the ``fiber length $l_f$, defined as the scale over which the polymers remain straight. The calculated scaling properties for the shear modulus are in excellent agreement with the results of recent simulations obtained in two-dimensional model networks. Furthermore, our theory can be applied to rationalize bulk rheological data in reconstituted actin networks.
The mechanical properties of DNA are typically described by elastic theories with purely local couplings (on-site models). We discuss and analyze coarse-grained (oxDNA) and all-atom simulations, which indicate that in DNA distal sites are coupled. Hence, off-site models provide a more realistic description of the mechanics of the double helix. We show that off-site interactions are responsible for a length scale dependence of the elasticity, and we develop an analytical framework to estimate bending and torsional persistence lengths in models including these interactions. Our simulations indicate that off-site couplings are particularly strong for certain degrees of freedom, while they are very weak for others. If stiffness parameters obtained from DNA data are used, the theory predicts large length scale dependent effects for torsional fluctuations and a modest effect in bending fluctuations, which is in agreement with experiments.
It has become clear in recent years that the simple uniform wormlike chain model needs to be modified in order to account for more complex behavior which has been observed experimentally in some important biopolymers. For example, the large flexibility of short ds-DNA has been attributed to kink or hinge defects. In this paper, we calculate analytically, within the weak bending approximation, the force-extension relation of a wormlike chain with a permanent hinge defect along its contour. The defect is characterized by its bending energy (which can be zero, in the completely flexible case) and its position along the polymer contour. Besides the bending rigidity of the chain, these are the only parameters which describe our model. We show that a hinge defect causes a significant increase in the differential tensile compliance of a pre-stressed chain. In the small force limit, a hinge defect significantly increases the entropic elasticity. Our results apply to any pair of semiflexible segments connected by a hinge. As such, they may also be relevant to cytoskeletal filaments (F-actin, microtubules), where one may treat the cross-link connecting two filaments as a hinge defect.
We have developed a new technique to measure viscoelasticity in soft materials such as polymer solutions, by monitoring thermal fluctuations of embedded probe particles using laser interferometry in a microscope. Interferometry allows us to obtain power spectra of fluctuating beads from 0.1 Hz to 20 kHz, and with sub-nanometer spatial resolution. Using linear response theory, we determined the frequency-dependent loss and storage shear moduli up to frequencies on the order of a kHz. Our technique measures local values of the viscoelastic response, without actively straining the system, and is especially suited to soft biopolymer networks. We studied semiflexible F-actin solutions and, as a control, flexible polyacrylamide (PAAm) gels, the latter close to their gelation threshold. With small particles, we could probe the transition from macroscopic viscoelasticity to more complex microscopic dynamics. In the macroscopic limit we find shear moduli at 0.1 Hz of G=0.11 +/- 0.03 Pa and 0.17 +/- 0.07 Pa for 1 and 2 mg/ml actin solutions, close to the onset of the elastic plateau, and scaling behavior consistent with G(omega) as omega^(3/4) at higher frequencies. For polyacrylamide we measured plateau moduli of 2.0, 24, 100 and 280 Pa for crosslinked gels of 2, 2.5, 3 and 5% concentration (weight/volume) respectively, in agreement to within a factor of two with values obtained from conventional rheology. We also found evidence for scaling of G(omega) as omega^(1/2), consistent with the predictions of the Rouse model for flexible polymers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا