No Arabic abstract
Existing literature in Continual Learning (CL) has focused on overcoming catastrophic forgetting, the inability of the learner to recall how to perform tasks observed in the past. There are however other desirable properties of a CL system, such as the ability to transfer knowledge from previous tasks and to scale memory and compute sub-linearly with the number of tasks. Since most current benchmarks focus only on forgetting using short streams of tasks, we first propose a new suite of benchmarks to probe CL algorithms across these new axes. Finally, we introduce a new modular architecture, whose modules represent atomic skills that can be composed to perform a certain task. Learning a task reduces to figuring out which past modules to re-use, and which new modules to instantiate to solve the current task. Our learning algorithm leverages a task-driven prior over the exponential search space of all possible ways to combine modules, enabling efficient learning on long streams of tasks. Our experiments show that this modular architecture and learning algorithm perform competitively on widely used CL benchmarks while yielding superior performance on the more challenging benchmarks we introduce in this work.
Conditional computation and modular networks have been recently proposed for multitask learning and other problems as a way to decompose problem solving into multiple reusable computational blocks. We propose a new approach for learning modular networks based on the isometric version of ResNet with all residual blocks having the same configuration and the same number of parameters. This architectural choice allows adding, removing and changing the order of residual blocks. In our method, the modules can be invoked repeatedly and allow knowledge transfer to novel tasks by adjusting the order of computation. This allows soft weight sharing between tasks with only a small increase in the number of parameters. We show that our method leads to interpretable self-organization of modules in case of multi-task learning, transfer learning and domain adaptation while achieving competitive results on those tasks. From practical perspective, our approach allows to: (a) reuse existing modules for learning new task by adjusting the computation order, (b) use it for unsupervised multi-source domain adaptation to illustrate that adaptation to unseen data can be achieved by only manipulating the order of pretrained modules, (c) show how our approach can be used to increase accuracy of existing architectures for image classification tasks such as ImageNet, without any parameter increase, by reusing the same block multiple times.
In this paper, we propose a continual learning (CL) technique that is beneficial to sequential task learners by improving their retained accuracy and reducing catastrophic forgetting. The principal target of our approach is the automatic extraction of modular parts of the neural network and then estimating the relatedness between the tasks given these modular components. This technique is applicable to different families of CL methods such as regularization-based (e.g., the Elastic Weight Consolidation) or the rehearsal-based (e.g., the Gradient Episodic Memory) approaches where episodic memory is needed. Empirical results demonstrate remarkable performance gain (in terms of robustness to forgetting) for methods such as EWC and GEM based on our technique, especially when the memory budget is very limited.
Learning new tasks continuously without forgetting on a constantly changing data distribution is essential for real-world problems but extremely challenging for modern deep learning. In this work we propose HCL, a Hybrid generative-discriminative approach to Continual Learning for classification. We model the distribution of each task and each class with a normalizing flow. The flow is used to learn the data distribution, perform classification, identify task changes, and avoid forgetting, all leveraging the invertibility and exact likelihood which are uniquely enabled by the normalizing flow model. We use the generative capabilities of the flow to avoid catastrophic forgetting through generative replay and a novel functional regularization technique. For task identification, we use state-of-the-art anomaly detection techniques based on measuring the typicality of the models statistics. We demonstrate the strong performance of HCL on a range of continual learning benchmarks such as split-MNIST, split-CIFAR, and SVHN-MNIST.
Leveraging data from multiple tasks, either all at once, or incrementally, to learn one model is an idea that lies at the heart of multi-task and continual learning methods. Ideally, such a model predicts each task more accurately than if the task were trained in isolation. We show using tools in statistical learning theory (i) how tasks can compete for capacity, i.e., including a particular task can deteriorate the accuracy on a given task, and (ii) that the ideal set of tasks that one should train together in order to perform well on a given task is different for different tasks. We develop methods to discover such competition in typical benchmark datasets which suggests that the prevalent practice of training with all tasks leaves performance on the table. This motivates our Model Zoo, which is a boosting-based algorithm that builds an ensemble of models, each of which is very small, and it is trained on a smaller set of tasks. Model Zoo achieves large gains in prediction accuracy compared to state-of-the-art methods across a variety of existing benchmarks in multi-task and continual learning, as well as more challenging ones of our creation. We also show that even a model trained independently on all tasks outperforms all existing multi-task and continual learning methods.
Continual Learning (CL) considers the problem of training an agent sequentially on a set of tasks while seeking to retain performance on all previous tasks. A key challenge in CL is catastrophic forgetting, which arises when performance on a previously mastered task is reduced when learning a new task. While a variety of methods exist to combat forgetting, in some cases tasks are fundamentally incompatible with each other and thus cannot be learnt by a single policy. This can occur, in reinforcement learning (RL) when an agent may be rewarded for achieving different goals from the same observation. In this paper we formalize this ``interference as distinct from the problem of forgetting. We show that existing CL methods based on single neural network predictors with shared replay buffers fail in the presence of interference. Instead, we propose a simple method, OWL, to address this challenge. OWL learns a factorized policy, using shared feature extraction layers, but separate heads, each specializing on a new task. The separate heads in OWL are used to prevent interference. At test time, we formulate policy selection as a multi-armed bandit problem, and show it is possible to select the best policy for an unknown task using feedback from the environment. The use of bandit algorithms allows the OWL agent to constructively re-use different continually learnt policies at different times during an episode. We show in multiple RL environments that existing replay based CL methods fail, while OWL is able to achieve close to optimal performance when training sequentially.