Do you want to publish a course? Click here

Task-agnostic Continual Learning with Hybrid Probabilistic Models

122   0   0.0 ( 0 )
 Added by Polina Kirichenko
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Learning new tasks continuously without forgetting on a constantly changing data distribution is essential for real-world problems but extremely challenging for modern deep learning. In this work we propose HCL, a Hybrid generative-discriminative approach to Continual Learning for classification. We model the distribution of each task and each class with a normalizing flow. The flow is used to learn the data distribution, perform classification, identify task changes, and avoid forgetting, all leveraging the invertibility and exact likelihood which are uniquely enabled by the normalizing flow model. We use the generative capabilities of the flow to avoid catastrophic forgetting through generative replay and a novel functional regularization technique. For task identification, we use state-of-the-art anomaly detection techniques based on measuring the typicality of the models statistics. We demonstrate the strong performance of HCL on a range of continual learning benchmarks such as split-MNIST, split-CIFAR, and SVHN-MNIST.



rate research

Read More

While neural networks are powerful function approximators, they suffer from catastrophic forgetting when the data distribution is not stationary. One particular formalism that studies learning under non-stationary distribution is provided by continual learning, where the non-stationarity is imposed by a sequence of distinct tasks. Most methods in this space assume, however, the knowledge of task boundaries, and focus on alleviating catastrophic forgetting. In this work, we depart from this view and move the focus towards faster remembering -- i.e measuring how quickly the network recovers performance rather than measuring the networks performance without any adaptation. We argue that in many settings this can be more effective and that it opens the door to combining meta-learning and continual learning techniques, leveraging their complementary advantages. We propose a framework specific for the scenario where no information about task boundaries or task identity is given. It relies on a separation of concerns into what task is being solved and how the task should be solved. This framework is implemented by differentiating task specific parameters from task agnostic parameters, where the latter are optimized in a continual meta learning fashion, without access to multiple tasks at the same time. We showcase this framework in a supervised learning scenario and discuss the implication of the proposed formalism.
Although recent multi-task learning methods have shown to be effective in improving the generalization of deep neural networks, they should be used with caution for safety-critical applications, such as clinical risk prediction. This is because even if they achieve improved task-average performance, they may still yield degraded performance on individual tasks, which may be critical (e.g., prediction of mortality risk). Existing asymmetric multi-task learning methods tackle this negative transfer problem by performing knowledge transfer from tasks with low loss to tasks with high loss. However, using loss as a measure of reliability is risky since it could be a result of overfitting. In the case of time-series prediction tasks, knowledge learned for one task (e.g., predicting the sepsis onset) at a specific timestep may be useful for learning another task (e.g., prediction of mortality) at a later timestep, but lack of loss at each timestep makes it difficult to measure the reliability at each timestep. To capture such dynamically changing asymmetric relationships between tasks in time-series data, we propose a novel temporal asymmetric multi-task learning model that performs knowledge transfer from certain tasks/timesteps to relevant uncertain tasks, based on feature-level uncertainty. We validate our model on multiple clinical risk prediction tasks against various deep learning models for time-series prediction, which our model significantly outperforms, without any sign of negative transfer. Further qualitative analysis of learned knowledge graphs by clinicians shows that they are helpful in analyzing the predictions of the model. Our final code is available at https://github.com/anhtuan5696/TPAMTL.
Meta-learning for few-shot learning entails acquiring a prior over previous tasks and experiences, such that new tasks be learned from small amounts of data. However, a critical challenge in few-shot learning is task ambiguity: even when a powerful prior can be meta-learned from a large number of prior tasks, a small dataset for a new task can simply be too ambiguous to acquire a single model (e.g., a classifier) for that task that is accurate. In this paper, we propose a probabilistic meta-learning algorithm that can sample models for a new task from a model distribution. Our approach extends model-agnostic meta-learning, which adapts to new tasks via gradient descent, to incorporate a parameter distribution that is trained via a variational lower bound. At meta-test time, our algorithm adapts via a simple procedure that injects noise into gradient descent, and at meta-training time, the model is trained such that this stochastic adaptation procedure produces samples from the approximate model posterior. Our experimental results show that our method can sample plausible classifiers and regressors in ambiguous few-shot learning problems. We also show how reasoning about ambiguity can also be used for downstream active learning problems.
Traditional learning approaches for classification implicitly assume that each mistake has the same cost. In many real-world problems though, the utility of a decision depends on the underlying context $x$ and decision $y$. However, directly incorporating these utilities into the learning objective is often infeasible since these can be quite complex and difficult for humans to specify. We formally study this as agnostic learning with unknown utilities: given a dataset $S = {x_1, ldots, x_n}$ where each data point $x_i sim mathcal{D}$, the objective of the learner is to output a function $f$ in some class of decision functions $mathcal{F}$ with small excess risk. This risk measures the performance of the output predictor $f$ with respect to the best predictor in the class $mathcal{F}$ on the unknown underlying utility $u^*$. This utility $u^*$ is not assumed to have any specific structure. This raises an interesting question whether learning is even possible in our setup, given that obtaining a generalizable estimate of utility $u^*$ might not be possible from finitely many samples. Surprisingly, we show that estimating the utilities of only the sampled points~$S$ suffices to learn a decision function which generalizes well. We study mechanisms for eliciting information which allow a learner to estimate the utilities $u^*$ on the set $S$. We introduce a family of elicitation mechanisms by generalizing comparisons, called the $k$-comparison oracle, which enables the learner to ask for comparisons across $k$ different inputs $x$ at once. We show that the excess risk in our agnostic learning framework decreases at a rate of $Oleft(frac{1}{k} right)$. This result brings out an interesting accuracy-elicitation trade-off -- as the order $k$ of the oracle increases, the comparative queries become harder to elicit from humans but allow for more accurate learning.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا