Do you want to publish a course? Click here

Learning Dense Representations of Phrases at Scale

85   0   0.0 ( 0 )
 Added by Jinhyuk Lee
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Open-domain question answering can be reformulated as a phrase retrieval problem, without the need for processing documents on-demand during inference (Seo et al., 2019). However, current phrase retrieval models heavily depend on sparse representations and still underperform retriever-reader approaches. In this work, we show for the first time that we can learn dense representations of phrases alone that achieve much stronger performance in open-domain QA. We present an effective method to learn phrase representations from the supervision of reading comprehension tasks, coupled with novel negative sampling methods. We also propose a query-side fine-tuning strategy, which can support transfer learning and reduce the discrepancy between training and inference. On five popular open-domain QA datasets, our model DensePhrases improves over previous phrase retrieval models by 15%-25% absolute accuracy and matches the performance of state-of-the-art retriever-reader models. Our model is easy to parallelize due to pure dense representations and processes more than 10 questions per second on CPUs. Finally, we directly use our pre-indexed dense phrase representations for two slot filling tasks, showing the promise of utilizing DensePhrases as a dense knowledge base for downstream tasks.



rate research

Read More

97 - Xisen Jin , Junyi Du , Arka Sadhu 2020
Humans acquire language continually with much more limited access to data samples at a time, as compared to contemporary NLP systems. To study this human-like language acquisition ability, we present VisCOLL, a visually grounded language learning task, which simulates the continual acquisition of compositional phrases from streaming visual scenes. In the task, models are trained on a paired image-caption stream which has shifting object distribution; while being constantly evaluated by a visually-grounded masked language prediction task on held-out test sets. VisCOLL compounds the challenges of continual learning (i.e., learning from continuously shifting data distribution) and compositional generalization (i.e., generalizing to novel compositions). To facilitate research on VisCOLL, we construct two datasets, COCO-shift and Flickr-shift, and benchmark them using different continual learning methods. Results reveal that SoTA continual learning approaches provide little to no improvements on VisCOLL, since storing examples of all possible compositions is infeasible. We conduct further ablations and analysis to guide future work.
When reading a text, it is common to become stuck on unfamiliar words and phrases, such as polysemous words with novel senses, rarely used idioms, internet slang, or emerging entities. If we humans cannot figure out the meaning of those expressions from the immediate local context, we consult dictionaries for definitions or search documents or the web to find other global context to help in interpretation. Can machines help us do this work? Which type of context is more important for machines to solve the problem? To answer these questions, we undertake a task of describing a given phrase in natural language based on its local and global contexts. To solve this task, we propose a neural description model that consists of two context encoders and a description decoder. In contrast to the existing methods for non-standard English explanation [Ni+ 2017] and definition generation [Noraset+ 2017; Gadetsky+ 2018], our model appropriately takes important clues from both local and global contexts. Experimental results on three existing datasets (including WordNet, Oxford and Urban Dictionaries) and a dataset newly created from Wikipedia demonstrate the effectiveness of our method over previous work.
Distinguishing between arguments and adjuncts of a verb is a longstanding, nontrivial problem. In natural language processing, argumenthood information is important in tasks such as semantic role labeling (SRL) and prepositional phrase (PP) attachment disambiguation. In theoretical linguistics, many diagnostic tests for argumenthood exist but they often yield conflicting and potentially gradient results. This is especially the case for syntactically oblique items such as PPs. We propose two PP argumenthood prediction tasks branching from these two motivations: (1) binary argument-adjunct classification of PPs in VerbNet, and (2) gradient argumenthood prediction using human judgments as gold standard, and report results from prediction models that use pretrained word embeddings and other linguistically informed features. Our best results on each task are (1) $acc.=0.955$, $F_1=0.954$ (ELMo+BiLSTM) and (2) Pearsons $r=0.624$ (word2vec+MLP). Furthermore, we demonstrate the utility of argumenthood prediction in improving sentence representations via performance gains on SRL when a sentence encoder is pretrained with our tasks.
Dual encoders perform retrieval by encoding documents and queries into dense lowdimensional vectors, scoring each document by its inner product with the query. We investigate the capacity of this architecture relative to sparse bag-of-words models and attentional neural networks. Using both theoretical and empirical analysis, we establish connections between the encoding dimension, the margin between gold and lower-ranked documents, and the document length, suggesting limitations in the capacity of fixed-length encodings to support precise retrieval of long documents. Building on these insights, we propose a simple neural model that combines the efficiency of dual encoders with some of the expressiveness of more costly attentional architectures, and explore sparse-dense hybrids to capitalize on the precision of sparse retrieval. These models outperform strong alternatives in large-scale retrieval.
110 - Wenye Li , Senyue Hao 2019
As the first step in automated natural language processing, representing words and sentences is of central importance and has attracted significant research attention. Different approaches, from the early one-hot and bag-of-words representation to more recent distributional dense and sparse representations, were proposed. Despite the successful results that have been achieved, such vectors tend to consist of uninterpretable components and face nontrivial challenge in both memory and computational requirement in practical applications. In this paper, we designed a novel representation model that projects dense word vectors into a higher dimensional space and favors a highly sparse and binary representation of word vectors with potentially interpretable components, while trying to maintain pairwise inner products between original vectors as much as possible. Computationally, our model is relaxed as a symmetric non-negative matrix factorization problem which admits a fast yet effective solution. In a series of empirical evaluations, the proposed model exhibited consistent improvement and high potential in practical applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا