Do you want to publish a course? Click here

Visually Grounded Continual Learning of Compositional Phrases

98   0   0.0 ( 0 )
 Added by Xisen Jin
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Humans acquire language continually with much more limited access to data samples at a time, as compared to contemporary NLP systems. To study this human-like language acquisition ability, we present VisCOLL, a visually grounded language learning task, which simulates the continual acquisition of compositional phrases from streaming visual scenes. In the task, models are trained on a paired image-caption stream which has shifting object distribution; while being constantly evaluated by a visually-grounded masked language prediction task on held-out test sets. VisCOLL compounds the challenges of continual learning (i.e., learning from continuously shifting data distribution) and compositional generalization (i.e., generalizing to novel compositions). To facilitate research on VisCOLL, we construct two datasets, COCO-shift and Flickr-shift, and benchmark them using different continual learning methods. Results reveal that SoTA continual learning approaches provide little to no improvements on VisCOLL, since storing examples of all possible compositions is infeasible. We conduct further ablations and analysis to guide future work.



rate research

Read More

During language acquisition, infants have the benefit of visual cues to ground spoken language. Robots similarly have access to audio and visual sensors. Recent work has shown that images and spoken captions can be mapped into a meaningful common space, allowing images to be retrieved using speech and vice versa. In this setting of images paired with untranscribed spoken captions, we consider whether computer vision systems can be used to obtain textual labels for the speech. Concretely, we use an image-to-words multi-label visual classifier to tag images with soft textual labels, and then train a neural network to map from the speech to these soft targets. We show that the resulting speech system is able to predict which words occur in an utterance---acting as a spoken bag-of-words classifier---without seeing any parallel speech and text. We find that the model often confuses semantically related words, e.g. man and person, making it even more effective as a semantic keyword spotter.
We present the Visually Grounded Neural Syntax Learner (VG-NSL), an approach for learning syntactic representations and structures without any explicit supervision. The model learns by looking at natural images and reading paired captions. VG-NSL generates constituency parse trees of texts, recursively composes representations for constituents, and matches them with images. We define concreteness of constituents by their matching scores with images, and use it to guide the parsing of text. Experiments on the MSCOCO data set show that VG-NSL outperforms various unsupervised parsing approaches that do not use visual grounding, in terms of F1 scores against gold parse trees. We find that VGNSL is much more stable with respect to the choice of random initialization and the amount of training data. We also find that the concreteness acquired by VG-NSL correlates well with a similar measure defined by linguists. Finally, we also apply VG-NSL to multiple languages in the Multi30K data set, showing that our model consistently outperforms prior unsupervised approaches.
Children acquire language subconsciously by observing the surrounding world and listening to descriptions. They can discover the meaning of words even without explicit language knowledge, and generalize to novel compositions effortlessly. In this paper, we bring this ability to AI, by studying the task of Visually grounded Language Acquisition (VLA). We propose a multimodal transformer model augmented with a novel mechanism for analogical reasoning, which approximates novel compositions by learning semantic mapping and reasoning operations from previously seen compositions. Our proposed method, Analogical Reasoning Transformer Networks (ARTNet), is trained on raw multimedia data (video frames and transcripts), and after observing a set of compositions such as washing apple or cutting carrot, it can generalize and recognize new compositions in new video frames, such as washing carrot or cutting apple. To this end, ARTNet refers to relevant instances in the training data and uses their visual features and captions to establish analogies with the query image. Then it chooses the suitable verb and noun to create a new composition that describes the new image best. Extensive experiments on an instructional video dataset demonstrate that the proposed method achieves significantly better generalization capability and recognition accuracy compared to state-of-the-art transformer models.
Sentence representation models trained only on language could potentially suffer from the grounding problem. Recent work has shown promising results in improving the qualities of sentence representations by jointly training them with associated image features. However, the grounding capability is limited due to distant connection between input sentences and image features by the design of the architecture. In order to further close the gap, we propose applying self-attention mechanism to the sentence encoder to deepen the grounding effect. Our results on transfer tasks show that self-attentive encoders are better for visual grounding, as they exploit specific words with strong visual associations.
Visually-grounded models of spoken language understanding extract semantic information directly from speech, without relying on transcriptions. This is useful for low-resource languages, where transcriptions can be expensive or impossible to obtain. Recent work showed that these models can be improved if transcriptions are available at training time. However, it is not clear how an end-to-end approach compares to a traditional pipeline-based approach when one has access to transcriptions. Comparing different strategies, we find that the pipeline approach works better when enough text is available. With low-resource languages in mind, we also show that translations can be effectively used in place of transcriptions but more data is needed to obtain similar results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا