No Arabic abstract
The primordial magnetic fields (PMFs) produced in the early universe are expected to be the origin of the large-scale cosmic magnetic fields. The PMFs are considered to leave a footprint on the cosmic microwave background (CMB) anisotropies due to both the electromagnetic force and gravitational interaction. In this paper, we investigate how the PMFs affect the CMB anisotropies on smaller scales than the mean-free-path of the CMB photons. We solve the baryon Euler equation with Lorentz force due to the PMFs, and we show that the vector-type perturbations from the PMFs induce the CMB anisotropies below the Silk scale as $ell>3000$. Based on our calculations, we put a constraint on the PMFs from the combined CMB temperature anisotropies obtained by Planck and South Pole Telescope (SPT). We have found that the highly-resolved temperature anisotropies of the SPT 2017 bandpowers at $ell lesssim 8000$ favor the PMF model with a small scale-dependence. As a result, the Planck and SPTs joint-analysis puts a constraint on the PMF spectral index as $n_B<-1.14$ at 95% confidence level (C.L.), and this is more stringent compared with the Planck-only constraint $n_B<-0.28$. We show that the PMF strength normalized on the co-moving 1 Mpc scale is also tightly constrained as $B_{1mathrm{Mpc}}<1.5$ nG with Planck and SPT at 95% C.L., while $B_{1mathrm{Mpc}}<3.2$ nG only with the Planck data at 95% C.L. We also discuss the effects on the cosmological parameter estimate when including the SPT data and CMB anisotropies induced by the PMFs.
While the arcminute-scale Cosmic Microwave Background (CMB) anisotropies are due to secondary effects, point sources dominate the total anisotropy power spectrum. At high frequencies the point sources are primarily in the form of dusty, star-forming galaxies. Both Herschel and Planck have recently measured the anisotropy power spectrum of cosmic infrared background (CIB) generated by dusty, star-forming galaxies from degree to sub-arcminute angular scales, including the non-linear clustering of these galaxies at multipoles of 3000 to 6000 relevant to CMB secondary anisotropy studies. We scale the CIB angular power spectra to CMB frequencies and interpret the combined WMAP-7 year and arcminute-scale Atacama Cosmology Telescope (ACT) and South Pole Telescope (SPT) CMB power spectra measurements to constrain the Sunyaev-Zeldovich (SZ) effects. Allowing the CIB clustering amplitude to vary, we constrain the amplitudes of thermal and kinetic SZ power spectra at 150 GHz.
Measuring spectral distortions of the cosmic microwave background (CMB) is attracting considerable attention as a probe of high energy particle physics in the cosmological context, since PIXIE and PRISM have recently been proposed. In this paper, CMB distortions due to resonant
Magnetic fields are everywhere in nature and they play an important role in every astronomical environment which involves the formation of plasma and currents. It is natural therefore to suppose that magnetic fields could be present in the turbulent high temperature environment of the big bang. Such a primordial magnetic field (PMF) would be expected to manifest itself in the cosmic microwave background (CMB) temperature and polarization anisotropies, and also in the formation of large- scale structure. In this review we summarize the theoretical framework which we have developed to calculate the PMF power spectrum to high precision. Using this formulation, we summarize calculations of the effects of a PMF which take accurate quantitative account of the time evolution of the cut off scale. We review the constructed numerical program, which is without approximation, and an improvement over the approach used in a number of previous works for studying the effect of the PMF on the cosmological perturbations. We demonstrate how the PMF is an important cosmological physical process on small scales. We also summarize the current constraints on the PMF amplitude $B_lambda$ and the power spectral index $n_B$ which have been deduced from the available CMB observational data by using our computational framework.
Primordial magnetic fields lead to non-Gaussian signals in the Cosmic Microwave Background (CMB) even at the lowest order, as magnetic stresses, and the temperature anisotropy they induce, depend quadratically on the magnetic field. In contrast, CMB non-Gaussianity due to inflationary scalar perturbations arise only as a higher order effect. We propose here a novel probe of stochastic primordial magnetic fields that exploits the characteristic CMB non-Gaussianity that they induce. In particular, we compute the CMB bispectrum ($b_{l_{_1}l_{_2}l_{_3}}$) induced by stochastic primordial fields on large angular scales. We find a typical value of $l_1(l_1+1)l_3(l_3+1) b_{l_{_1}l_{_2}l_{_3}} sim 10^{-22}$, for magnetic fields of strength $B_0 sim 3$ nano Gauss and with a nearly scale invariant magnetic spectrum. Current observational limits on the bispectrum allow us to set upper limits on $B_0 sim 35$ nano Gauss, which can be improved by including other magnetically induced contributions to the bispectrum.
Searching for the signal of primordial gravitational waves in the B-modes (BB) power spectrum is one of the key scientific aims of the cosmic microwave background (CMB) polarization experiments. However, this could be easily contaminated by several foreground issues, such as the thermal dust emission. In this paper we study another mechanism, the cosmic birefringence, which can be introduced by a CPT-violating interaction between CMB photons and an external scalar field. Such kind of interaction could give rise to the rotation of the linear polarization state of CMB photons, and consequently induce the CMB BB power spectrum, which could mimic the signal of primordial gravitational waves at large scales. With the recent polarization data of BICEP2 and the joint analysis data of BICEP2/Keck Array and Planck, we perform a global fitting analysis on constraining the tensor-to-scalar ratio $r$ by considering the polarization rotation angle which can be separated into a background isotropic part and a small anisotropic part. Since the data of BICEP2 and Keck Array experiments have already been corrected by using the self-calibration method, here we mainly focus on the effects from the anisotropies of CMB polarization rotation angle. We find that including the anisotropies in the analysis could slightly weaken the constraints on $r$, when using current CMB polarization measurements. We also simulate the mock CMB data with the BICEP3-like sensitivity. Very interestingly, we find that if the effects of the anisotropic polarization rotation angle can not be taken into account properly in the analysis, the constraints on $r$ will be dramatically biased. This implies that we need to break the degeneracy between the anisotropies of the CMB polarization rotation angle and the CMB primordial tensor perturbations, in order to measure the signal of primordial gravitational waves accurately.