Do you want to publish a course? Click here

On the inverse eigenvalue problem for block graphs

172   0   0.0 ( 0 )
 Added by Jephian C.-H. Lin
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

The inverse eigenvalue problem of a graph $G$ aims to find all possible spectra for matrices whose $(i,j)$-entry, for $i eq j$, is nonzero precisely when $i$ is adjacent to $j$. In this work, the inverse eigenvalue problem is completely solved for a subfamily of clique-path graphs, in particular for lollipop graphs and generalized barbell graphs. For a matrix $A$ with associated graph $G$, a new technique utilizing the strong spectral property is introduced, allowing us to construct a matrix $A$ whose graph is obtained from $G$ by appending a clique while arbitrary list of eigenvalues is added to the spectrum. Consequently, many spectra are shown realizable for block graphs.



rate research

Read More

For a graph $G$, we associate a family of real symmetric matrices, $mathcal{S}(G)$, where for any $M in mathcal{S}(G)$, the location of the nonzero off-diagonal entries of $M$ are governed by the adjacency structure of $G$. The ordered multiplicity Inverse Eigenvalue Problem of a Graph (IEPG) is concerned with finding all attainable ordered lists of eigenvalue multiplicities for matrices in $mathcal{S}(G)$. For connected graphs of order six, we offer significant progress on the IEPG, as well as a complete solution to the ordered multiplicity IEPG. We also show that while $K_{m,n}$ with $min(m,n)ge 3$ attains a particular ordered multiplicity list, it cannot do so with arbitrary spectrum.
Let G be an undirected graph on n vertices and let S(G) be the set of all real symmetric n x n matrices whose nonzero off-diagonal entries occur in exactly the positions corresponding to the edges of G. The inverse inertia problem for G asks which inertias can be attained by a matrix in S(G). We give a complete answer to this question for trees in terms of a new family of graph parameters, the maximal disconnection numbers of a graph. We also give a formula for the inertia set of a graph with a cut vertex in terms of inertia sets of proper subgraphs. Finally, we give an example of a graph that is not inertia-balanced, and investigate restrictions on the inertia set of any graph.
The inverse eigenvalue problem of a given graph $G$ is to determine all possible spectra of real symmetric matrices whose off-diagonal entries are governed by the adjacencies in $G$. Barrett et al. introduced the Strong Spectral Property (SSP) and the Strong Multiplicity Property (SMP) in [8]. In that paper it was shown that if a graph has a matrix with the SSP (or the SMP) then a supergraph has a matrix with the same spectrum (or ordered multiplicity list) augmented with simple eigenvalues if necessary, that is, subgraph monotonicity. In this paper we extend this to a form of minor monotonicity, with restrictions on where the new eigenvalues appear. These ideas are applied to solve the inverse eigenvalue problem for all graphs of order five, and to characterize forbidden minors of graphs having at most one multiple eigenvalue.
We investigate fat Hoffman graphs with smallest eigenvalue at least -3, using their special graphs. We show that the special graph S(H) of an indecomposable fat Hoffman graph H is represented by the standard lattice or an irreducible root lattice. Moreover, we show that if the special graph admits an integral representation, that is, the lattice spanned by it is not an exceptional root lattice, then the special graph S(H) is isomorphic to one of the Dynkin graphs A_n, D_n, or extended Dynkin graphs A_n or D_n.
In 1967, ErdH{o}s asked for the greatest chromatic number, $f(n)$, amongst all $n$-vertex, triangle-free graphs. An observation of ErdH{o}s and Hajnal together with Shearers classical upper bound for the off-diagonal Ramsey number $R(3, t)$ shows that $f(n)$ is at most $(2 sqrt{2} + o(1)) sqrt{n/log n}$. We improve this bound by a factor $sqrt{2}$, as well as obtaining an analogous bound on the list chromatic number which is tight up to a constant factor. A bound in terms of the number of edges that is similarly tight follows, and these results confirm a conjecture of Cames van Batenburg, de Joannis de Verclos, Kang, and Pirot.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا