No Arabic abstract
The role of the environment on the formation of S0 galaxies is still not well understood, specifically in the outskirts of galaxy clusters. We study eight low-redshift clusters, analyzing galaxy members up to cluster-centric distances $sim2.5,R_{200}$. We perform 2D photometric bulge-disk decomposition in the $g$-, $r$- and $i$-bands from which we identify 469 double-component galaxies. We analyze separately the colors of the bulges and the disks and their dependence on the projected cluster-centric distance and on the local galaxy density. For our sample of cluster S0 galaxies, we find that bulges are redder than their surrounding disks, show a significant color-magnitude trend, and have colors that do not correlate with environment metrics. On the other hand, the disks associated with our cluster S0s become significantly bluer with increasing cluster-centric radius, but show no evidence for a color-magnitude relation. The disk color-radius relation is mainly driven by galaxies in the cluster core at $0leq R/ R_{200}<0.5$. No significant difference is found for the disk colors of backsplash and infalling galaxies in the projected phase space. Beyond $R_{200}$, the disk colors do not change with the local galaxy density, indicating that the colors of double-component galaxies are not affected by pre-processing. A significant color-density relation is observed for single-component disk-dominated galaxies beyond $R_{200}$. We conclude that the formation of cluster S0 galaxies is primarily driven by cluster core processes acting on the disks, while evidence of pre-processing is found for single-component disk-dominated galaxies. We publicly release the data from the bulge-disk decomposition.
We investigate the stellar kinematics of the bulge and disk components in 826 galaxies with a wide range of morphology from the Sydney-AAO Multi-object Integral-field spectroscopy (SAMI) Galaxy Survey. The spatially-resolved rotation velocity (V) and velocity dispersion ($sigma$) of bulge and disk components have been simultaneously estimated using the penalized pixel fitting (pPXF) method with photometrically defined weights for the two components. We introduce a new subroutine of pPXF for dealing with degeneracy in the solutions. We show that the V and $sigma$ distributions in each galaxy can be reconstructed using the kinematics and weights of the bulge and disk components. The combination of two distinct components provides a consistent description of the major kinematic features of galaxies over a wide range of morphological types. We present Tully-Fisher and Faber-Jackson relations showing that the galaxy stellar mass scales with both V and $sigma$ for both components of all galaxy types. We find a tight Faber-Jackson relation even for the disk component. We show that the bulge and disk components are kinematically distinct: (1) the two components show scaling relations with similar slopes, but different intercepts; (2) the spin parameter $lambda_R$ indicates bulges are pressure-dominated systems and disks are supported by rotation; (3) the bulge and disk components have, respectively, low and high values in intrinsic ellipticity. Our findings suggest that the relative contributions of the two components explain, at least to first order, the complex kinematic behaviour of galaxies.
We study the effects of the environment on galaxy quenching in the outskirts of clusters at $0.04 < z < 0.08$. We use a subsample of 14 WINGS and OmegaWINGS clusters that are linked to other groups/clusters by filaments and study separately galaxies located in two regions in the outskirts of these clusters according to whether they are located towards the filaments directions or not. We also use samples of galaxies in clusters and field as comparison. Filamentary structures linking galaxy groups/clusters were identified over the Six Degree Field Galaxy Redshift Survey Data Release 3. We find a fraction of passive galaxies in the outskirts of clusters intermediate between that of the clusters and the fields. We find evidence of a more effective quenching in the direction of the filaments. We also analyse the abundance of post-starburst galaxies in the outskirts of clusters focusing our study on two extreme sets of galaxies according to their phase-space position: backsplash and true infallers. We find that up to $sim70%$ of post-starburst galaxies in the direction of filaments are likely backsplash, while this number drops to $sim40%$ in the isotropic infall region. The presence of this small fraction of galaxies in filaments that are falling into clusters for the first time and have been recently quenched, supports a scenario in which a significant number of filament galaxies have been quenched long time ago.
Galaxy cluster outskirts are described by complex velocity fields induced by diffuse material collapsing towards filaments, gas and galaxies falling into clusters, and gas shock processes triggered by substructures. A simple scenario that describes the large-scale tidal fields of the cosmic web is not able to fully account for this variety, nor for the differences between gas and collisionless dark matter. We have studied the filamentary structure in zoom-in resimulations centred on 324 clusters from The ThreeHundred project, focusing on differences between dark and baryonic matter. This paper describes the properties of filaments around clusters out to five $R_{200}$, based on the diffuse filament medium where haloes had been removed. For this, we stack the remaining particles of all simulated volumes to calculate the average profiles of dark matter and gas filaments. We find that filaments increase their thickness closer to nodes and detect signatures of gas turbulence at a distance of $sim 2 h^{-1}rm{Mpc}$ from the cluster. These are absent in dark matter. Both gas and dark matter collapse towards filament spines at a rate of $sim 200 h^{-1} rm{km ~ s^{-1}} $. We see that gas preferentially enters the cluster as part of filaments, and leaves the cluster centre outside filaments. We further see evidence for an accretion shock just outside the cluster. For dark matter, this preference is less obvious. We argue that this difference is related to the turbulent environment. This indicates that filaments act as highways to fuel the inner regions of clusters with gas and galaxies.
Until recently, only about 10% of the total intracluster gas volume had been studied with high accuracy, leaving a vast region essentially unexplored. This is now changing and a wide area of hot gas physics and chemistry awaits discovery in galaxy cluster outskirts. Also, robust large-scale total mass profiles and maps are within reach. First observational and theoretical results in this emerging field have been achieved in recent years with sometimes surprising findings. Here, we summarize and illustrate the relevant underlying physical and chemical processes and review the recent progress in X-ray, Sunyaev--Zeldovich, and weak gravitational lensing observations of cluster outskirts, including also brief discussions of technical challenges and possible future improvements.
We use a sample built on the SDSS DR7 catalogue and the bulge-disc decomposition of Simard et al. (2011) to study how the bulge and disc components contribute to the parent galaxys star formation activity, by determining its position in the star formation rate (SFR) - stellar mass (M$_{star}$) plane at 0.02$<z<$0.1. We use the bulge and disc colours as proxy for their SFRs. We study the mean galaxy bulge-total mass ratio (B/T) as a function of the residual from the MS ($Delta_{MS}$) and find that the B/T-$Delta_{MS}$ relation exhibits a parabola-like shape with the peak of the MS corresponding to the lowest B/Ts at any stellar mass. The lower and upper envelop of the MS are populated by galaxies with similar B/T, velocity dispersion and concentration ($R_{90}/R_{50}$) values. Bulges above the MS are characterised by blue colours or, when red, by a high level of dust obscuration, thus indicating that in both cases they are actively star forming. When on the MS or below it, bulges are mostly red and dead. At stellar masses above $10^{10.5} $M$_{odot}$, bulges on the MS or in the green valley tend to be significantly redder than their counterparts in the quiescence region, despite similar levels of dust obscuration. The disc color anti-correlates at any mass with the distance from the MS, getting redder when approaching the MS lower envelope and the quiescence region. We conclude that the position of a galaxy in the LogSFR-LogM$_{star}$ plane depends on the star formation activity of its components: above the MS both bulge and disk are actively star forming. The nuclear activity is the first to be suppressed, moving the galaxies on the MS. Once the disk stops forming stars as well, the galaxy moves below the MS and eventually to the quiescence region. This is confirmed by a large fraction ($sim45%$) of passive galaxies with a secure two component morphology.