Do you want to publish a course? Click here

The ThreeHundred: the structure and properties of cosmic filaments in the outskirts of galaxy clusters

130   0   0.0 ( 0 )
 Added by Agust\\'in Rost
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Galaxy cluster outskirts are described by complex velocity fields induced by diffuse material collapsing towards filaments, gas and galaxies falling into clusters, and gas shock processes triggered by substructures. A simple scenario that describes the large-scale tidal fields of the cosmic web is not able to fully account for this variety, nor for the differences between gas and collisionless dark matter. We have studied the filamentary structure in zoom-in resimulations centred on 324 clusters from The ThreeHundred project, focusing on differences between dark and baryonic matter. This paper describes the properties of filaments around clusters out to five $R_{200}$, based on the diffuse filament medium where haloes had been removed. For this, we stack the remaining particles of all simulated volumes to calculate the average profiles of dark matter and gas filaments. We find that filaments increase their thickness closer to nodes and detect signatures of gas turbulence at a distance of $sim 2 h^{-1}rm{Mpc}$ from the cluster. These are absent in dark matter. Both gas and dark matter collapse towards filament spines at a rate of $sim 200 h^{-1} rm{km ~ s^{-1}} $. We see that gas preferentially enters the cluster as part of filaments, and leaves the cluster centre outside filaments. We further see evidence for an accretion shock just outside the cluster. For dark matter, this preference is less obvious. We argue that this difference is related to the turbulent environment. This indicates that filaments act as highways to fuel the inner regions of clusters with gas and galaxies.



rate research

Read More

We study the effects of the environment on galaxy quenching in the outskirts of clusters at $0.04 < z < 0.08$. We use a subsample of 14 WINGS and OmegaWINGS clusters that are linked to other groups/clusters by filaments and study separately galaxies located in two regions in the outskirts of these clusters according to whether they are located towards the filaments directions or not. We also use samples of galaxies in clusters and field as comparison. Filamentary structures linking galaxy groups/clusters were identified over the Six Degree Field Galaxy Redshift Survey Data Release 3. We find a fraction of passive galaxies in the outskirts of clusters intermediate between that of the clusters and the fields. We find evidence of a more effective quenching in the direction of the filaments. We also analyse the abundance of post-starburst galaxies in the outskirts of clusters focusing our study on two extreme sets of galaxies according to their phase-space position: backsplash and true infallers. We find that up to $sim70%$ of post-starburst galaxies in the direction of filaments are likely backsplash, while this number drops to $sim40%$ in the isotropic infall region. The presence of this small fraction of galaxies in filaments that are falling into clusters for the first time and have been recently quenched, supports a scenario in which a significant number of filament galaxies have been quenched long time ago.
The role of the environment on the formation of S0 galaxies is still not well understood, specifically in the outskirts of galaxy clusters. We study eight low-redshift clusters, analyzing galaxy members up to cluster-centric distances $sim2.5,R_{200}$. We perform 2D photometric bulge-disk decomposition in the $g$-, $r$- and $i$-bands from which we identify 469 double-component galaxies. We analyze separately the colors of the bulges and the disks and their dependence on the projected cluster-centric distance and on the local galaxy density. For our sample of cluster S0 galaxies, we find that bulges are redder than their surrounding disks, show a significant color-magnitude trend, and have colors that do not correlate with environment metrics. On the other hand, the disks associated with our cluster S0s become significantly bluer with increasing cluster-centric radius, but show no evidence for a color-magnitude relation. The disk color-radius relation is mainly driven by galaxies in the cluster core at $0leq R/ R_{200}<0.5$. No significant difference is found for the disk colors of backsplash and infalling galaxies in the projected phase space. Beyond $R_{200}$, the disk colors do not change with the local galaxy density, indicating that the colors of double-component galaxies are not affected by pre-processing. A significant color-density relation is observed for single-component disk-dominated galaxies beyond $R_{200}$. We conclude that the formation of cluster S0 galaxies is primarily driven by cluster core processes acting on the disks, while evidence of pre-processing is found for single-component disk-dominated galaxies. We publicly release the data from the bulge-disk decomposition.
Upcoming wide-field surveys are well-suited to studying the growth of galaxy clusters by tracing galaxy and gas accretion along cosmic filaments. We use hydrodynamic simulations of volumes surrounding 324 clusters from textsc{The ThreeHundred} project to develop a framework for identifying and characterising these filamentary structures, and associating galaxies with them. We define 3-dimensional reference filament networks reaching $5R_{200}$ based on the underlying gas distribution and quantify their recovery using mock galaxy samples mimicking observations such as those of the WEAVE Wide-Field Cluster Survey. Since massive galaxies trace filaments, they are best recovered by mass-weighting galaxies or imposing a bright limit (e.g. $>L^*$) on their selection. We measure the transverse gas density profile of filaments, derive a characteristic filament radius of $simeq0.7$--$1~h^{-1}rm{Mpc}$, and use this to assign galaxies to filaments. For different filament extraction methods we find that at $R>R_{200}$, $sim15$--$20%$ of galaxies with $M_*>3 times 10^9 M_{odot}$ are in filaments, increasing to $sim60%$ for galaxies more massive than the Milky-Way. The fraction of galaxies in filaments is independent of cluster mass and dynamical state, and is a function of cluster-centric distance, increasing from $sim13$% at $5R_{200}$ to $sim21$% at $1.5R_{200}$. As a bridge to the design of observational studies, we measure the purity and completeness of different filament galaxy selection strategies. Encouragingly, the overall 3-dimensional filament networks and $sim67$% of the galaxies associated with them are recovered from 2-dimensional galaxy positions.
We report on the possibility of studying the proprieties of cosmic diffuse baryons by studying self-gravitating clumps and filaments connected to galaxy clusters. While filaments are challenging to detect with X-ray observations, the higher density of clumps makes them visible and a viable tracer to study the thermodynamical proprieties of baryons undergoing accretion along cosmic web filaments onto galaxy clusters. We developed new algorithms to identify these structures and applied them to a set of non-radiative cosmological simulations of galaxy clusters at high resolution. We find that in those simulated clusters, the density and temperature of clumps are independent of the mass of the cluster where they reside. We detected a positive correlation between the filament temperature and the host cluster mass. The density and temperature of clumps and filaments also tended to correlate. Both the temperature and density decrease moving outward. We observed that clumps are hotter, more massive, and more luminous if identified closer to the cluster center. Especially in the outermost cluster regions (~3*R500,c or beyond), X-ray observations might already have the potential to locate cosmic filaments based on the distribution of clumps and to allow one to study the thermodynamics of diffuse baryons before they are processed by the intracluster medium.
Until recently, only about 10% of the total intracluster gas volume had been studied with high accuracy, leaving a vast region essentially unexplored. This is now changing and a wide area of hot gas physics and chemistry awaits discovery in galaxy cluster outskirts. Also, robust large-scale total mass profiles and maps are within reach. First observational and theoretical results in this emerging field have been achieved in recent years with sometimes surprising findings. Here, we summarize and illustrate the relevant underlying physical and chemical processes and review the recent progress in X-ray, Sunyaev--Zeldovich, and weak gravitational lensing observations of cluster outskirts, including also brief discussions of technical challenges and possible future improvements.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا