Do you want to publish a course? Click here

Augmenting Policy Learning with Routines Discovered from a Single Demonstration

56   0   0.0 ( 0 )
 Added by Jiajun Wu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Humans can abstract prior knowledge from very little data and use it to boost skill learning. In this paper, we propose routine-augmented policy learning (RAPL), which discovers routines composed of primitive actions from a single demonstration and uses discovered routines to augment policy learning. To discover routines from the demonstration, we first abstract routine candidates by identifying grammar over the demonstrated action trajectory. Then, the best routines measured by length and frequency are selected to form a routine library. We propose to learn policy simultaneously at primitive-level and routine-level with discovered routines, leveraging the temporal structure of routines. Our approach enables imitating expert behavior at multiple temporal scales for imitation learning and promotes reinforcement learning exploration. Extensive experiments on Atari games demonstrate that RAPL improves the state-of-the-art imitation learning method SQIL and reinforcement learning method A2C. Further, we show that discovered routines can generalize to unseen levels and difficulties on the CoinRun benchmark.



rate research

Read More

Off-policy Reinforcement Learning (RL) holds the promise of better data efficiency as it allows sample reuse and potentially enables safe interaction with the environment. Current off-policy policy gradient methods either suffer from high bias or high variance, delivering often unreliable estimates. The price of inefficiency becomes evident in real-world scenarios such as interaction-driven robot learning, where the success of RL has been rather limited, and a very high sample cost hinders straightforward application. In this paper, we propose a nonparametric Bellman equation, which can be solved in closed form. The solution is differentiable w.r.t the policy parameters and gives access to an estimation of the policy gradient. In this way, we avoid the high variance of importance sampling approaches, and the high bias of semi-gradient methods. We empirically analyze the quality of our gradient estimate against state-of-the-art methods, and show that it outperforms the baselines in terms of sample efficiency on classical control tasks.
Learning from Observations (LfO) is a practical reinforcement learning scenario from which many applications can benefit through the reuse of incomplete resources. Compared to conventional imitation learning (IL), LfO is more challenging because of the lack of expert action guidance. In both conventional IL and LfO, distribution matching is at the heart of their foundation. Traditional distribution matching approaches are sample-costly which depend on on-policy transitions for policy learning. Towards sample-efficiency, some off-policy solutions have been proposed, which, however, either lack comprehensive theoretical justifications or depend on the guidance of expert actions. In this work, we propose a sample-efficient LfO approach that enables off-policy optimization in a principled manner. To further accelerate the learning procedure, we regulate the policy update with an inverse action model, which assists distribution matching from the perspective of mode-covering. Extensive empirical results on challenging locomotion tasks indicate that our approach is comparable with state-of-the-art in terms of both sample-efficiency and asymptotic performance.
Invariances to translation, rotation and other spatial transformations are a hallmark of the laws of motion, and have widespread use in the natural sciences to reduce the dimensionality of systems of equations. In supervised learning, such as in image classification tasks, rotation, translation and scale invariances are used to augment training datasets. In this work, we use data augmentation in a similar way, exploiting symmetry in the quadruped domain of the DeepMind control suite (Tassa et al. 2018) to add to the trajectories experienced by the actor in the actor-critic algorithm of Abdolmaleki et al. (2018). In a data-limited regime, the agent using a set of experiences augmented through symmetry is able to learn faster. Our approach can be used to inject knowledge of invariances in the domain and task to augment learning in robots, and more generally, to speed up learning in realistic robotics applications.
Reinforcement learning (RL) in low-data and risk-sensitive domains requires performant and flexible deployment policies that can readily incorporate constraints during deployment. One such class of policies are the semi-parametric H-step lookahead policies, which select actions using trajectory optimization over a dynamics model for a fixed horizon with a terminal value function. In this work, we investigate a novel instantiation of H-step lookahead with a learned model and a terminal value function learned by a model-free off-policy algorithm, named Learning Off-Policy with Online Planning (LOOP). We provide a theoretical analysis of this method, suggesting a tradeoff between model errors and value function errors and empirically demonstrate this tradeoff to be beneficial in deep reinforcement learning. Furthermore, we identify the Actor Divergence issue in this framework and propose Actor Regularized Control (ARC), a modified trajectory optimization procedure. We evaluate our method on a set of robotic tasks for Offline and Online RL and demonstrate improved performance. We also show the flexibility of LOOP to incorporate safety constraints during deployment with a set of navigation environments. We demonstrate that LOOP is a desirable framework for robotics applications based on its strong performance in various important RL settings.
Demonstration-guided reinforcement learning (RL) is a promising approach for learning complex behaviors by leveraging both reward feedback and a set of target task demonstrations. Prior approaches for demonstration-guided RL treat every new task as an independent learning problem and attempt to follow the provided demonstrations step-by-step, akin to a human trying to imitate a completely unseen behavior by following the demonstrators exact muscle movements. Naturally, such learning will be slow, but often new behaviors are not completely unseen: they share subtasks with behaviors we have previously learned. In this work, we aim to exploit this shared subtask structure to increase the efficiency of demonstration-guided RL. We first learn a set of reusable skills from large offline datasets of prior experience collected across many tasks. We then propose Skill-based Learning with Demonstrations (SkiLD), an algorithm for demonstration-guided RL that efficiently leverages the provided demonstrations by following the demonstrated skills instead of the primitive actions, resulting in substantial performance improvements over prior demonstration-guided RL approaches. We validate the effectiveness of our approach on long-horizon maze navigation and complex robot manipulation tasks.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا