Do you want to publish a course? Click here

Learning Off-Policy with Online Planning

322   0   0.0 ( 0 )
 Added by Harshit Sikchi
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Reinforcement learning (RL) in low-data and risk-sensitive domains requires performant and flexible deployment policies that can readily incorporate constraints during deployment. One such class of policies are the semi-parametric H-step lookahead policies, which select actions using trajectory optimization over a dynamics model for a fixed horizon with a terminal value function. In this work, we investigate a novel instantiation of H-step lookahead with a learned model and a terminal value function learned by a model-free off-policy algorithm, named Learning Off-Policy with Online Planning (LOOP). We provide a theoretical analysis of this method, suggesting a tradeoff between model errors and value function errors and empirically demonstrate this tradeoff to be beneficial in deep reinforcement learning. Furthermore, we identify the Actor Divergence issue in this framework and propose Actor Regularized Control (ARC), a modified trajectory optimization procedure. We evaluate our method on a set of robotic tasks for Offline and Online RL and demonstrate improved performance. We also show the flexibility of LOOP to incorporate safety constraints during deployment with a set of navigation environments. We demonstrate that LOOP is a desirable framework for robotics applications based on its strong performance in various important RL settings.



rate research

Read More

In this work, we consider the problem of model selection for deep reinforcement learning (RL) in real-world environments. Typically, the performance of deep RL algorithms is evaluated via on-policy interactions with the target environment. However, comparing models in a real-world environment for the purposes of early stopping or hyperparameter tuning is costly and often practically infeasible. This leads us to examine off-policy policy evaluation (OPE) in such settings. We focus on OPE for value-based methods, which are of particular interest in deep RL, with applications like robotics, where off-policy algorithms based on Q-function estimation can often attain better sample complexity than direct policy optimization. Existing OPE metrics either rely on a model of the environment, or the use of importance sampling (IS) to correct for the data being off-policy. However, for high-dimensional observations, such as images, models of the environment can be difficult to fit and value-based methods can make IS hard to use or even ill-conditioned, especially when dealing with continuous action spaces. In this paper, we focus on the specific case of MDPs with continuous action spaces and sparse binary rewards, which is representative of many important real-world applications. We propose an alternative metric that relies on neither models nor IS, by framing OPE as a positive-unlabeled (PU) classification problem with the Q-function as the decision function. We experimentally show that this metric outperforms baselines on a number of tasks. Most importantly, it can reliably predict the relative performance of different policies in a number of generalization scenarios, including the transfer to the real-world of policies trained in simulation for an image-based robotic manipulation task.
This paper investigates the problem of online prediction learning, where learning proceeds continuously as the agent interacts with an environment. The predictions made by the agent are contingent on a particular way of behaving, represented as a value function. However, the behavior used to select actions and generate the behavior data might be different from the one used to define the predictions, and thus the samples are generated off-policy. The ability to learn behavior-contingent predictions online and off-policy has long been advocated as a key capability of predictive-knowledge learning systems but remained an open algorithmic challenge for decades. The issue lies with the temporal difference (TD) learning update at the heart of most prediction algorithms: combining bootstrapping, off-policy sampling and function approximation may cause the value estimate to diverge. A breakthrough came with the development of a new objective function that admitted stochastic gradient descent variants of TD. Since then, many sound online off-policy prediction algorithms have been developed, but there has been limited empirical work investigating the relative merits of all the variants. This paper aims to fill these empirical gaps and provide clarity on the key ideas behind each method. We summarize the large body of literature on off-policy learning, focusing on 1- methods that use computation linear in the number of features and are convergent under off-policy sampling, and 2- other methods which have proven useful with non-fixed, nonlinear function approximation. We provide an empirical study of off-policy prediction methods in two challenging microworlds. We report each methods parameter sensitivity, empirical convergence rate, and final performance, providing new insights that should enable practitioners to successfully extend these new methods to large-scale applications.[Abridged abstract]
We introduce Hindsight Off-policy Options (HO2), a data-efficient option learning algorithm. Given any trajectory, HO2 infers likely option choices and backpropagates through the dynamic programming inference procedure to robustly train all policy components off-policy and end-to-end. The approach outperforms existing option learning methods on common benchmarks. To better understand the option framework and disentangle benefits from both temporal and action abstraction, we evaluate ablations with flat policies and mixture policies with comparable optimization. The results highlight the importance of both types of abstraction as well as off-policy training and trust-region constraints, particularly in challenging, simulated 3D robot manipulation tasks from raw pixel inputs. Finally, we intuitively adapt the inference step to investigate the effect of increased temporal abstraction on training with pre-trained options and from scratch.
Off-policy Reinforcement Learning (RL) holds the promise of better data efficiency as it allows sample reuse and potentially enables safe interaction with the environment. Current off-policy policy gradient methods either suffer from high bias or high variance, delivering often unreliable estimates. The price of inefficiency becomes evident in real-world scenarios such as interaction-driven robot learning, where the success of RL has been rather limited, and a very high sample cost hinders straightforward application. In this paper, we propose a nonparametric Bellman equation, which can be solved in closed form. The solution is differentiable w.r.t the policy parameters and gives access to an estimation of the policy gradient. In this way, we avoid the high variance of importance sampling approaches, and the high bias of semi-gradient methods. We empirically analyze the quality of our gradient estimate against state-of-the-art methods, and show that it outperforms the baselines in terms of sample efficiency on classical control tasks.
Policy Optimization (PO) is a widely used approach to address continuous control tasks. In this paper, we introduce the notion of mediator feedback that frames PO as an online learning problem over the policy space. The additional available information, compared to the standard bandit feedback, allows reusing samples generated by one policy to estimate the performance of other policies. Based on this observation, we propose an algorithm, RANDomized-exploration policy Optimization via Multiple Importance Sampling with Truncation (RANDOMIST), for regret minimization in PO, that employs a randomized exploration strategy, differently from the existing optimistic approaches. When the policy space is finite, we show that under certain circumstances, it is possible to achieve constant regret, while always enjoying logarithmic regret. We also derive problem-dependent regret lower bounds. Then, we extend RANDOMIST to compact policy spaces. Finally, we provide numerical simulations on finite and compact policy spaces, in comparison with PO and bandit baselines.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا