Do you want to publish a course? Click here

Fully heavy pentaquarks

104   0   0.0 ( 0 )
 Added by Xiang Liu
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

Very recently, the LHCb Collaboration reported a fully charmed tetraquark state $X(6900)$ in the invariant mass spectrum of $J/psi$ pairs. If one $J/psi$ meson is replaced with a fully charmed baryon, we obtain a fully charmed pentaquark candidate. In this work, we perform a systematic study on the mass spectra of the S-wave fully heavy pentaquark $QQQQbar{Q}$ in the framework of the chromomagnetic interaction model. Based on our results in two different schemes, we further investigate the decay behaviors for them. We hope that our study will be helpful in searching for such types of exotic pentaquark states in experiments in the future.



rate research

Read More

We construct the spin-flavor wave functions of the possible heavy pentaquarks containing an anti-charm or anti-bottom quark using various clustered quark models. Then we estimate the masses and magnetic moments of the $J^P={1over 2}^+$ or ${3over 2}^+$ heavy pentaquarks. We emphasize the difference in the predictions of these models. Future experimental searches at BESIII, CLEOc, BELLE, and LEP may find these interesting states.
In this work, we systematically study the mass spectrum of the fully heavy tetraquark in an extended chromomagnetic model, which includes both color and chromomagnetic interactions. Numerical results indicate that the energy level is mainly determined by the color interaction, which favors the color-sextet $ket{(QQ)^{6_{c}}(bar{Q}bar{Q})^{bar{6}_{c}}}$ configuration over the color-triplet $ket{(QQ)^{bar{3}_{c}}(bar{Q}bar{Q})^{3_{c}}}$ one. The chromomagnetic interaction mixes the two color configurations and gives small splitting. The ground state is always dominated by the color-sextet configuration. We find no stable state below the lowest heavy quarkonium pair thresholds. Most states may be wide since they have at least one $S$-wave decay channel into two $S$-wave mesons. One possible narrow state is the $1^{+}$ $bbbar{b}bar{c}$ state with a mass $15719.1~text{MeV}$. It is just above the $eta_{b}bar{B}_{c}$ threshold. But this channel is forbidden because of the conservation of the angular momentum and parity.
In this work, we carry out the study of heavy flavor pentatuarks with four heavy quarks, which have typical $QQQQbar q$ configuration. Within the Chromomagnetic Interaction model, the mass spectrum of these discussed $QQQQbar q$ pentaquarks is given. In addition to the mass spectrum analysis, we also illustrate their two-body strong decay behavior by estimating some ratios of decay channels. By these effort, we suggest that future experiment should pay attention to this kind of pentaquark.
113 - Xiao-Hai Liu , Makoto Oka 2016
We investigate the reaction $pi^- p to pi^- J/psi p$ via the open-charm hadron rescattering diagrams. Due to the presence of the triangle singularity (TS) in the rescattering amplitudes, the TS peaks can simulate the pentaquark-like resonances arising in the $J/psi p$ invariant mass distributions, which may bring ambiguities on our understanding of the nature of the exotic states. Searching for the heavy pentaquark in different processes may help us to clarify the ambiguities, because of the highly process-dependent characteristic of the TS mechanism.
101 - Rui Chen , Ning Li , Zhi-Feng Sun 2021
We perform a systematic exploration of the possible doubly charmed molecular pentaquarks composed of $Sigma_c^{(*)}D^{(*)}$ with the one-boson-exchange potential model. After taking into account the $S-D$ wave mixing and the coupled channel effects, we predict several possible doubly charmed molecular pentaquarks, which include the $Sigma_cD$ with $I(J^P) = 1/2(1/2^-)$, $Sigma_c^*D$ with $1/2(3/2^-)$, and $Sigma_cD^*$ with $1/2(1/2^-)$, $1/2(3/2^-)$. The $Sigma_cD$ state with $3/2(1/2^-)$ and $Sigma_cD^*$ state with $3/2(1/2^-)$ may also be suggested as candidates of doubly charmed molecular pentaquarks. The $Sigma_cD$ and $Sigma_c^*D$ states can be searched for by analyzing the $Lambda_cDpi$ invariant mass spectrum of the bottom baryon and $B$ meson decays. The $Sigma_cD^*$ states can be searched for in the invariant mass spectrum of $Lambda_cD^*pi$, $Lambda_cDpipi$ and $Lambda_cDpigamma$. Since the width of $Sigma_c^*$ is much larger than that of $D^*$, $Sigma_c^*Drightarrow Lambda_cDpi$ will be the dominant decay mode. We sincerely hope these candidates for the doubly charmed molecular pentaqurks will be searched by LHCb or BelleII collaboration in the near future.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا