No Arabic abstract
We perform a systematic exploration of the possible doubly charmed molecular pentaquarks composed of $Sigma_c^{(*)}D^{(*)}$ with the one-boson-exchange potential model. After taking into account the $S-D$ wave mixing and the coupled channel effects, we predict several possible doubly charmed molecular pentaquarks, which include the $Sigma_cD$ with $I(J^P) = 1/2(1/2^-)$, $Sigma_c^*D$ with $1/2(3/2^-)$, and $Sigma_cD^*$ with $1/2(1/2^-)$, $1/2(3/2^-)$. The $Sigma_cD$ state with $3/2(1/2^-)$ and $Sigma_cD^*$ state with $3/2(1/2^-)$ may also be suggested as candidates of doubly charmed molecular pentaquarks. The $Sigma_cD$ and $Sigma_c^*D$ states can be searched for by analyzing the $Lambda_cDpi$ invariant mass spectrum of the bottom baryon and $B$ meson decays. The $Sigma_cD^*$ states can be searched for in the invariant mass spectrum of $Lambda_cD^*pi$, $Lambda_cDpipi$ and $Lambda_cDpigamma$. Since the width of $Sigma_c^*$ is much larger than that of $D^*$, $Sigma_c^*Drightarrow Lambda_cDpi$ will be the dominant decay mode. We sincerely hope these candidates for the doubly charmed molecular pentaqurks will be searched by LHCb or BelleII collaboration in the near future.
The isospin breaking effect plays an essential role in generating hadronic molecular states with a very tiny binding energy. Very recently, the LHCb Collaboration observed a very narrow doubly charmed tetraquark $T_{cc}^+$ in the $D^0D^0pi$ mass spectrum, which lies just below the $D^0D^{*+}$ threshold around 273 keV. In this work, we study the $D^0D^{*+}/D^+D^{*0}$ interactions with the one-boson-exchange effective potentials and consider the isospin breaking effect carefully. We not only reproduce the mass of the newly observed $T_{cc}^+$ very well in the doubly charmed molecular tetraquark scenario, but also predict the other doubly charmed partner resonance $T_{cc}^{prime+}$ with $m=3876~text{MeV}$, and $Gamma= 412~text{keV}$. The prime decay modes of the $T_{cc}^{prime+}$ are $D^0D^+gamma$ and $D^+D^0pi^0$.
Stimulated by the newly reported doubly-charmed tetraquark state $T_{cc}^+$ by LHCb, we carry out a systematic investigation of the $S$-wave interactions between the charmed meson ($D,,D^{*}$) in $H$-doublet and the charmed meson ($D_{1},,D_{2}^{*}$) in $T$-doublet by adopting the one-boson-exchange model. Both the $S$-$D$ wave mixing effect and the coupled channel effect are taken into account. By performing a quantitative calculation, we suggest that the $S$-wave $D^{*} D_{1}$ states with $I(J^{P})=0(0^{-},,1^{-})$ and the $S$-wave $D^{*}D_{2}^{*}$ state with $I(J^{P})=0(1^{-})$ should be viewed as the most promising candidates of the doubly-charmed molecular tetraquark states, and the $S$-wave $DD_{1}$ state with $I(J^{P})=0(1^{-})$, the $S$-wave $DD_{2}^{*}$ state with $I(J^{P})=0(2^{-})$, and the $S$-wave $D^{*}D_{2}^{*}$ state with $I(J^{P})=0(2^{-})$ are the possible doubly-charmed molecular tetraquark candidates. With the accumulation of experimental data at Run III and after High-Luminosity-LHC upgrade, these predicted doubly-charmed molecular tetraquark states can be accessible at LHCb in the near future.
The hadronic two-body weak decays of the doubly charmed baryons $Xi_{cc}^{++}, Xi_{cc}^+$ and $Omega_{cc}^+$ are studied in this work. To estimate the nonfactorizable contributions, we work in the pole model for the $P$-wave amplitudes and current algebra for $S$-wave ones. For the $Xi_{cc}^{++}to Xi_c^+pi^+$ mode, we find a large destructive interference between factorizable and nonfactorizable contributions for both $S$- and $P$-wave amplitudes. Our prediction of $sim 0.70%$ for its branching fraction is smaller than the earlier estimates in which nonfactorizable effects were not considered, but agrees nicely with the result based on an entirely different approach, namely, the covariant confined quark model. On the contrary, a large constructive interference was found in the $P$-wave amplitude by Dhir and Sharma, leading to a branching fraction of order $(7-16)%$. Using the current results for the absolute branching fractions of $(Lambda_c^+,Xi_c^+)to p K^-pi^+$ and the LHCb measurement of $Xi_{cc}^{++}toXi_c^+pi^+$ relative to $Xi_{cc}^{++}toLambda_c^+ K^- pi^+pi^+$, we obtain $B(Xi_{cc}^{++}toXi_c^+pi^+)_{rm expt}approx (1.83pm1.01)%$ after employing the latest prediction of $B(Xi_{cc}^{++}toSigma_c^{++}overline{K}^{*0})$. Our prediction of $mathcal{B}(Xi_{cc}^{++}toXi_c^+pi^+)approx 0.7%$ is thus consistent with the experimental value but in the lower end. It is important to pin down the branching fraction of this mode in future study. Factorizable and nonfactorizable $S$-wave amplitudes interfere constructively in $Xi_{cc}^+toXi_c^0pi^+$. Its large branching fraction of order 4% may enable experimentalists to search for the $Xi_{cc}^+$ through this mode. That is, the $Xi_{cc}^+$ is reconstructed through the $Xi_{cc}^+toXi_c^0pi^+$ followed by the decay chain $Xi_c^0to Xi^-pi^+to ppi^-pi^-pi^+$.
Doubly Cabibbo-suppressed (DCS) nonleptonic weak decays of antitriplet charmed baryons are studied systematically in this work. The factorizable and nonfactorizable contributions can be classified explicitly in the topological-diagram approach and treated separately. In particular, the evaluation of nonfactorizable terms is based on the pole model in conjunction with current algebra. All three types of relevant non-perturbative parameters contributing factorizable and nonfactorizable terms are estimated in the MIT bag model. Branching fractions of all the DCS decays are predicted to be of order $10^{-4}sim 10^{-6}$. In particular, we find that the three modes $Xi_c^+to Sigma^+ K^0, Sigma^0 K^+$ and $Xi_c^0to Sigma^- K^+$ are as large as $(1sim 2)times 10^{-4}$, which are the most promising DCS channels to be measured. We also point out that the two DCS modes $Xi_c^+to Sigma^+ K^0$ and $Xi_c^0to Sigma^0 K^0$ are possible to be distinguished from $Xi_c^+to Sigma^+ K_S$ and $Xi_c^0to Sigma^0 K_S$. The decay asymmetries for all the channels with a kaon in their final states are found to be large in magnitude and negative in sign.
We have systematically investigated the magnetic moments of spin-$frac{1}{2}$ doubly charmed baryons in the framework of the heavy baryon chiral perturbation theory. In this paper, one loop corrections with intermediate spin-$frac{1}{2}$ and spin-$frac{3}{2}$ doubly charmed baryon states are considered. The numerical results are calculated to next-to-leading order: $mu_{Xi^{++}_{cc}}=0.35mu_{N}$, $mu_{Xi^{+}_{cc}}=0.62mu_{N}$, $mu_{Omega^{+}_{cc}}=0.41mu_{N}$. Our results may be useful for future experiment and chiral extrapolation of the lattice QCD.