No Arabic abstract
Radio access network (RAN) virtualization is gaining more and more ground and expected to re-architect the next-generation cellular networks. Existing RAN virtualization studies and solutions have mostly focused on sharing communication capacity and tend to require the use of the same PHY and MAC layers across network slices. This approach has not considered the scenarios where different slices require different PHY and MAC layers, for instance, for radically different services and for whole-stack research in wireless living labs where novel PHY and MAC layers need to be deployed concurrently with existing ones on the same physical infrastructure. To enable whole-stack slicing where different PHY and MAC layers may be deployed in different slices, we develop PV-RAN, the first open-source virtual RAN platform that enables the sharing of the same SDR physical resources across multiple slices. Through API Remoting, PV-RAN enables running paravirtualized instances of OpenAirInterface (OAI) at different slices without requiring modifying OAI source code. PV-RAN effectively leverages the inter-domain communication mechanisms of Xen to transport time-sensitive I/Q samples via shared memory, making the virtualization overhead in communication almost negligible. We conduct detailed performance benchmarking of PV-RAN and demonstrate its low overhead and high efficiency. We also integrate PV-RAN with the CyNet wireless living lab for smart agriculture and transportation.
Software defined networking (SDN) has emerged as a promising paradigm for making the control of communication networks flexible. SDN separates the data packet forwarding plane, i.e., the data plane, from the control plane and employs a central controller. Network virtualization allows the flexible sharing of physical networking resources by multiple users (tenants). Each tenant runs its own applications over its virtual network, i.e., its slice of the actual physical network. The virtualization of SDN networks promises to allow networks to leverage the combined benefits of SDN networking and network virtualization and has therefore attracted significant research attention in recent years. A critical component for virtualizing SDN networks is an SDN hypervisor that abstracts the underlying physical SDN network into multiple logically isolated virtual SDN networks (vSDNs), each with its own controller. We comprehensively survey hypervisors for SDN networks in this article. We categorize the SDN hypervisors according to their architecture into centralized and distributed hypervisors. We furthermore sub-classify the hypervisors according to their execution platform into hypervisors running exclusively on general-purpose compute platforms, or on a combination of general-purpose compute platforms with general- or special-purpose network elements. We exhaustively compare the network attribute abstraction and isolation features of the existing SDN hypervisors. As part of the future research agenda, we outline the development of a performance evaluation framework for SDN hypervisors.
Software-defined networking (SDN) provides an agile and programmable way to optimize radio access networks via a control-data plane separation. Nevertheless, reaping the benefits of wireless SDN hinges on making optimal use of the limited wireless fronthaul capacity. In this work, the problem of fronthaul-aware resource allocation and user scheduling is studied. To this end, a two-timescale fronthaul-aware SDN control mechanism is proposed in which the controller maximizes the time-averaged network throughput by enforcing a coarse correlated equilibrium in the long timescale. Subsequently, leveraging the controllers recommendations, each base station schedules its users using Lyapunov stochastic optimization in the short timescale, i.e., at each time slot. Simulation results show that significant network throughput enhancements and up to 40% latency reduction are achieved with the aid of the SDN controller. Moreover, the gains are more pronounced for denser network deployments.
The performance of computer networks relies on how bandwidth is shared among different flows. Fair resource allocation is a challenging problem particularly when the flows evolve over time.To address this issue, bandwidth sharing techniques that quickly react to the traffic fluctuations are of interest, especially in large scale settings with hundreds of nodes and thousands of flows. In this context, we propose a distributed algorithm that tackles the fair resource allocation problem in a distributed SDN control architecture. Our algorithm continuously generates a sequence of resource allocation solutions converging to the fair allocation while always remaining feasible, a property that standard primal-dual decomposition methods often lack. Thanks to the distribution of all computer intensive operations, we demonstrate that we can handle large instances in real-time.
Software-defined networking (SDN) is the concept of decoupling the control and data planes to create a flexible and agile network, assisted by a central controller. However, the performance of SDN highly depends on the limitations in the fronthaul which are inadequately discussed in the existing literature. In this paper, a fronthaul-aware software-defined resource allocation mechanism is proposed for 5G wireless networks with in-band wireless fronthaul constraints. Considering the fronthaul capacity, the controller maximizes the time-averaged network throughput by enforcing a coarse correlated equilibrium (CCE) and incentivizing base stations (BSs) to locally optimize their decisions to ensure mobile users (MUs) quality-of-service (QoS) requirements. By marrying tools from Lyapunov stochastic optimization and game theory, we propose a two-timescale approach where the controller gives recommendations, i.e., sub-carriers with low interference, in a long-timescale whereas BSs schedule their own MUs and allocate the available resources in every time slot. Numerical results show considerable throughput enhancements and delay reductions over a non-SDN network baseline.
Internet-native audio-visual services are witnessing rapid development. Among these services, object-based audio-visual services are gaining importance. In 2014, we established the Software Defined Media (SDM) consortium to target new research areas and markets involving object-based digital media and Internet-by-design audio-visual environments. In this paper, we introduce the SDM architecture that virtualizes networked audio-visual services along with the development of smart buildings and smart cities using Internet of Things (IoT) devices and smart building facilities. Moreover, we design the SDM architecture as a layered architecture to promote the development of innovative applications on the basis of rapid advancements in software-defined networking (SDN). Then, we implement a prototype system based on the architecture, present the system at an exhibition, and provide it as an SDM API to application developers at hackathons. Various types of applications are developed using the API at these events. An evaluation of SDM API access shows that the prototype SDM platform effectively provides 3D audio reproducibility and interactiveness for SDM applications.