Do you want to publish a course? Click here

Fronthaul-Aware Software-Defined Joint Resource Allocation and User Scheduling for 5G Networks

109   0   0.0 ( 0 )
 Added by Chen-Feng Liu
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

Software-defined networking (SDN) is the concept of decoupling the control and data planes to create a flexible and agile network, assisted by a central controller. However, the performance of SDN highly depends on the limitations in the fronthaul which are inadequately discussed in the existing literature. In this paper, a fronthaul-aware software-defined resource allocation mechanism is proposed for 5G wireless networks with in-band wireless fronthaul constraints. Considering the fronthaul capacity, the controller maximizes the time-averaged network throughput by enforcing a coarse correlated equilibrium (CCE) and incentivizing base stations (BSs) to locally optimize their decisions to ensure mobile users (MUs) quality-of-service (QoS) requirements. By marrying tools from Lyapunov stochastic optimization and game theory, we propose a two-timescale approach where the controller gives recommendations, i.e., sub-carriers with low interference, in a long-timescale whereas BSs schedule their own MUs and allocate the available resources in every time slot. Numerical results show considerable throughput enhancements and delay reductions over a non-SDN network baseline.



rate research

Read More

Software-defined networking (SDN) provides an agile and programmable way to optimize radio access networks via a control-data plane separation. Nevertheless, reaping the benefits of wireless SDN hinges on making optimal use of the limited wireless fronthaul capacity. In this work, the problem of fronthaul-aware resource allocation and user scheduling is studied. To this end, a two-timescale fronthaul-aware SDN control mechanism is proposed in which the controller maximizes the time-averaged network throughput by enforcing a coarse correlated equilibrium in the long timescale. Subsequently, leveraging the controllers recommendations, each base station schedules its users using Lyapunov stochastic optimization in the short timescale, i.e., at each time slot. Simulation results show that significant network throughput enhancements and up to 40% latency reduction are achieved with the aid of the SDN controller. Moreover, the gains are more pronounced for denser network deployments.
The performance of computer networks relies on how bandwidth is shared among different flows. Fair resource allocation is a challenging problem particularly when the flows evolve over time.To address this issue, bandwidth sharing techniques that quickly react to the traffic fluctuations are of interest, especially in large scale settings with hundreds of nodes and thousands of flows. In this context, we propose a distributed algorithm that tackles the fair resource allocation problem in a distributed SDN control architecture. Our algorithm continuously generates a sequence of resource allocation solutions converging to the fair allocation while always remaining feasible, a property that standard primal-dual decomposition methods often lack. Thanks to the distribution of all computer intensive operations, we demonstrate that we can handle large instances in real-time.
With the advantages of Millimeter wave in wireless communication network, the coverage radius and inter-site distance can be further reduced, the ultra dense network (UDN) becomes the mainstream of future networks. The main challenge faced by UDN is the serious inter-site interference, which needs to be carefully addressed by joint user association and resource allocation methods. In this paper, we propose a multi-agent Q-learning based method to jointly optimize the user association and resource allocation in UDN. The deep Q-network is applied to guarantee the convergence of the proposed method. Simulation results reveal the effectiveness of the proposed method and different performances under different simulation parameters are evaluated.
To improve traffic management ability, Internet Service Providers (ISPs) are gradually upgrading legacy network devices to programmable devices that support Software-Defined Networking (SDN). The coexistence of legacy and SDN devices gives rise to a hybrid SDN. Existing hybrid SDNs do not consider the potential performance issues introduced by a centralized SDN controller: flow requests processed by a highly loaded controller may experience long tail processing delay; inappropriate multi-controller deployment could increase the propagation delay of flow requests. In this paper, we propose to jointly consider the deployment of SDN switches and their controllers for hybrid SDNs. We formulate the joint problem as an optimization problem that maximizes the number of flows that can be controlled and managed by the SDN and minimizes the propagation delay of flow requests between SDN controllers and switches under a given upgrade budget constraint. We show this problem is NP-hard. To efficiently solve the problem, we propose some techniques (e.g., strengthening the constraints and adding additional valid inequalities) to accelerate the global optimization solver for solving the problem for small networks and an efficient heuristic algorithm for solving it for large networks. The simulation results from real network topologies illustrate the effectiveness of the proposed techniques and show that our proposed heuristic algorithm uses a small number of controllers to manage a high amount of flows with good performance.
403 - Xihan Chen , Yunlong Cai , An Liu 2020
Millimeter wave (mmWave) communication systems using adaptive-resolution analog-to-digital converters (RADCs) have recently drawn considerable interests from the research community as benefit of their high energy efficiency and low implementation cost. In this paper, we focus on the mmWave uplink using RADCs and investigate the joint user scheduling and resource allocation problem. Specifically, we seek to maximize the system throughput of the scheduled users by jointly optimizing their transmit power level and hybrid combiners as well as the number of quantization bits, subject to practical constraints. By relying on fractional programming (FP) techniques, we first covert this problem into a form amenable to optimization and exploit the specific structures in its solutions with the aid of the so-called Ky Fan n-norm. Then, the resultant optimization problem is solved using a penalty block successive concave approximation (P-BSCA) algorithm. Our numerical results reveal that the proposed algorithm substantially enhances the throughput of the scheduled users compared to the state-of-theart benchmark schemes and provides more flexible and efficient resource allocation control.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا