Do you want to publish a course? Click here

Do We Need Improved Code Quality Metrics?

198   0   0.0 ( 0 )
 Added by Tushar Sharma
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The software development community has been using code quality metrics for the last five decades. Despite their wide adoption, code quality metrics have attracted a fair share of criticism. In this paper, first, we carry out a qualitative exploration by surveying software developers to gauge their opinions about current practices and potential gaps with the present set of metrics. We identify deficiencies including lack of soundness, i.e., the ability of a metric to capture a notion accurately as promised by the metric, lack of support for assessing software architecture quality, and insufficient support for assessing software testing and infrastructure. In the second part of the paper, we focus on one specific code quality metric-LCOM as a case study to explore opportunities towards improved metrics. We evaluate existing LCOM algorithms qualitatively and quantitatively to observe how closely they represent the concept of cohesion. In this pursuit, we first create eight diverse cases that any LCOM algorithm must cover and obtain their cohesion levels by a set of experienced developers and consider them as a ground truth. We show that the present set of LCOM algorithms do poorly w.r.t. these cases. To bridge the identified gap, we propose a new approach to compute LCOM and evaluate the new approach with the ground truth. We also show, using a quantitative analysis using more than 90 thousand types belonging to 261 high-quality Java repositories, the present set of methods paint a very inaccurate and misleading picture of class cohesion. We conclude that the current code quality metrics in use suffer from various deficiencies, presenting ample opportunities for the research community to address the gaps.



rate research

Read More

Infrastructure-as-code (IaC) is a practice to implement continuous deployment by allowing management and provisioning of infrastructure through the definition of machine-readable files and automation around them, rather than physical hardware configuration or interactive configuration tools. On the one hand, although IaC represents an ever-increasing widely adopted practice nowadays, still little is known concerning how to best maintain, speedily evolve, and continuously improve the code behind the IaC practice in a measurable fashion. On the other hand, source code measurements are often computed and analyzed to evaluate the different quality aspects of the software developed. However, unlike general-purpose programming languages (GPLs), IaC scripts use domain-specific languages, and metrics used for GPLs may not be applicable for IaC scripts. This article proposes a catalogue consisting of 46 metrics to identify IaC properties focusing on Ansible, one of the most popular IaC language to date, and shows how they can be used to analyze IaC scripts.
We examine the possibility of soft cosmology, namely small deviations from the usual framework due to the effective appearance of soft-matter properties in the Universe sectors. One effect of such a case would be the dark energy to exhibit a different equation-of-state parameter at large scales (which determine the universe expansion) and at intermediate scales (which determine the sub-horizon clustering and the large scale structure formation). Concerning soft dark matter, we show that it can effectively arise due to the dark-energy clustering, even if dark energy is not soft. We propose a novel parametrization introducing the softness parameters of the dark sectors. As we see, although the background evolution remains unaffected, due to the extreme sensitivity and significant effects on the global properties even a slightly non-trivial softness parameter can improve the clustering behavior and alleviate e.g. the $fsigma_8$ tension. Lastly, an extension of the cosmological perturbation theory and a detailed statistical mechanical analysis, in order to incorporate complexity and estimate the scale-dependent behavior from first principles, is necessary and would provide a robust argumentation in favour of soft cosmology.
The intent recognition is an essential algorithm of any conversational AI application. It is responsible for the classification of an input message into meaningful classes. In many bot development platforms, we can configure the NLU pipeline. Several intent recognition services are currently available as an API, or we choose from many open-source alternatives. However, there is no comparison of intent recognition services and open-source algorithms. Many factors make the selection of the right approach to the intent recognition challenging in practice. In this paper, we suggest criteria to choose the best intent recognition algorithm for an application. We present a dataset for evaluation. Finally, we compare selected public NLU services with selected open-source algorithms for intent recognition.
We consider reciprocal metasurfaces with engineered reflection and transmission coefficients and study the role of normal (with respect to the metasurface plane) electric and magnetic polarizations on the possibilities to shape the reflection and transmission responses. We demonstrate in general and on a representative example that the presence of normal components of the polarization vectors does not add extra degrees of freedom in engineering the reflection and transmission characteristics of metasurfaces. Furthermore, we discuss advantages and disadvantages of equivalent volumetric and fully planar realizations of the same properties of functional metasurfaces.
Visual Dialog involves understanding the dialog history (what has been discussed previously) and the current question (what is asked), in addition to grounding information in the image, to generate the correct response. In this paper, we show that co-attention models which explicitly encode dialog history outperform models that dont, achieving state-of-the-art performance (72 % NDCG on val set). However, we also expose shortcomings of the crowd-sourcing dataset collection procedure by showing that history is indeed only required for a small amount of the data and that the current evaluation metric encourages generic replies. To that end, we propose a challenging subset (VisDialConv) of the VisDial val set and provide a benchmark of 63% NDCG.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا