Do you want to publish a course? Click here

Predictive Ultra-Reliable Communication: A Survival Analysis Perspective

71   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Ultra-reliable communication (URC) is a key enabler for supporting immersive and mission-critical 5G applications. Meeting the strict reliability requirements of these applications is challenging due to the absence of accurate statistical models tailored to URC systems. In this letter, the wireless connectivity over dynamic channels is characterized via statistical learning methods. In particular, model-based and data-driven learning approaches are proposed to estimate the non-blocking connectivity statistics over a set of training samples with no knowledge on the dynamic channel statistics. Using principles of survival analysis, the reliability of wireless connectivity is measured in terms of the probability of channel blocking events. Moreover, the maximum transmission duration for a given reliable non-blocking connectivity is predicted in conjunction with the confidence of the inferred transmission duration. Results show that the accuracy of detecting channel blocking events is higher using the model-based method for low to moderate reliability targets requiring low sample complexity. In contrast, the data-driven method shows higher detection accuracy for higher reliability targets at the cost of 100$times$ sample complexity.



rate research

Read More

To date, model-based reliable communication with low latency is of paramount importance for time-critical wireless control systems. In this work, we study the downlink (DL) controller-to-actuator scheduling problem in a wireless industrial network such that the outage probability is minimized. In contrast to the existing literature based on well-known stationary fading channel models, we assume an arbitrary and unknown channel fading model, which is available only via samples. To overcome the issue of limited data samples, we invoke the generative adversarial network framework and propose an online data-driven approach to jointly schedule the DL transmissions and learn the channel distributions in an online manner. Numerical results show that the proposed approach can effectively learn any arbitrary channel distribution and further achieve the optimal performance by using the predicted outage probability.
Effective Capacity defines the maximum communication rate subject to a specific delay constraint, while effective energy efficiency (EEE) indicates the ratio between effective capacity and power consumption. We analyze the EEE of ultra-reliable networks operating in the finite blocklength regime. We obtain a closed form approximation for the EEE in quasi-static Nakagami-$m$ (and Rayleigh as sub-case) fading channels as a function of power, error probability, and latency. Furthermore, we characterize the QoS constrained EEE maximization problem for different power consumption models, which shows a significant difference between finite and infinite blocklength coding with respect to EEE and optimal power allocation strategy. As asserted in the literature, achieving ultra-reliability using one transmission consumes huge amount of power, which is not applicable for energy limited IoT devices. In this context, accounting for empty buffer probability in machine type communication (MTC) and extending the maximum delay tolerance jointly enhances the EEE and allows for adaptive retransmission of faulty packets. Our analysis reveals that obtaining the optimum error probability for each transmission by minimizing the non-empty buffer probability approaches EEE optimality, while being analytically tractable via Dinkelbachs algorithm. Furthermore, the results illustrate the power saving and the significant EEE gain attained by applying adaptive retransmission protocols, while sacrificing a limited increase in latency.
Millimeter-wave (mmWave) frequency bands offer a new frontier for next-generation wireless networks, popularly known as 5G, to enable multi-gigabit communication; however, the availability and reliability of mmWave signals are significantly limited due to its unfavorable propagation characteristics. Thus, mmWave networks rely on directional narrow-beam transmissions to overcome severe path-loss. To mitigate the impact of transmission-reception directionality and provide uninterrupted network services, ensuring the availability of mmWave transmission links is important. In this paper, we proposed a new flexible network architecture to provide efficient resource coordination among serving basestations during user mobility. The key idea of this holistic architecture is to exploit the software-defined networking (SDN) technology with mmWave communication to provide a flexible and resilient network architecture. Besides, this paper presents an efficient and seamless uncoordinated network operation to support reliable communication in highly-dynamic environments characterized by high density and mobility of wireless devices. To warrant high-reliability and guard against the potential radio link failure, we introduce a new transmission framework to ensure that there is at least one basestation is connected to the UE at all times. We validate the proposed transmission scheme through simulations.
This paper proposes and demonstrates a PHY-layer design of a real-time prototype that supports Ultra-Reliable Communication (URC) in wireless infrastructure networks. The design makes use of Orthogonal Frequency Division Multiple Access (OFDMA) as a means to achieve URC. Compared with Time-Division Multiple Access (TDMA), OFDMA concentrates the transmit power to a narrower bandwidth, resulting in higher effective SNR. Compared with Frequency-Division Multiple Access (FDMA), OFDMA has higher spectrum efficiency thanks to the smaller subcarrier spacing. Although OFDMA has been introduced in 802.11ax, the purpose was to add flexibility in spectrum usage. Our Reliable OFDMA design, referred to as ROFA, is a clean-slate design with a single goal of ultra-reliable packet delivery. ROFA solves a number of key challenges to ensure the ultra-reliability: (1) a downlink-coordinated time-synchronization mechanism to synchronize the uplink transmission of users, with at most $0.1us$ timing offset; (2) an STF-free packet reception synchronization method that makes use of the property of synchronous systems to avoid packet misdetection; and (3) an uplink precoding mechanism to reduce the CFOs between users and the AP to a negligible level. We implemented ROFA on the Universal Software Radio Peripheral (USRP) SDR platform with real-time signal processing. Extensive experimental results show that ROFA can achieve ultra-reliable packet delivery ($PER<10^5$) with $11.5dB$ less transmit power compared with OFDM-TDMA when they use $3$ and $52$ subcarriers respectively.
Considering a Manhattan mobility model in vehicle-to-vehicle networks, this work studies a power minimization problem subject to second-order statistical constraints on latency and reliability, captured by a network-wide maximal data queue length. We invoke results in extreme value theory to characterize statistics of extreme events in terms of the maximal queue length. Subsequently, leveraging Lyapunov stochastic optimization to deal with network dynamics, we propose two queue-aware power allocation solutions. In contrast with the baseline, our approaches achieve lower mean and variance of the maximal queue length.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا