Do you want to publish a course? Click here

Alleviating Noisy Data in Image Captioning with Cooperative Distillation

135   0   0.0 ( 0 )
 Added by Youssef Mroueh
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Image captioning systems have made substantial progress, largely due to the availability of curated datasets like Microsoft COCO or Vizwiz that have accurate descriptions of their corresponding images. Unfortunately, scarce availability of such cleanly labeled data results in trained algorithms producing captions that can be terse and idiosyncratically specific to details in the image. We propose a new technique, cooperative distillation that combines clean curated datasets with the web-scale automatically extracted captions of the Google Conceptual Captions dataset (GCC), which can have poor descriptions of images, but is abundant in size and therefore provides a rich vocabulary resulting in more expressive captions.



rate research

Read More

Generic Image recognition is a fundamental and fairly important visual problem in computer vision. One of the major challenges of this task lies in the fact that single image usually has multiple objects inside while the labels are still one-hot, another one is noisy and sometimes missing labels when annotated by humans. In this paper, we focus on tackling these challenges accompanying with two different image recognition problems: multi-model ensemble and noisy data recognition with a unified framework. As is well-known, usually the best performing deep neural models are ensembles of multiple base-level networks, as it can mitigate the variation or noise containing in the dataset. Unfortunately, the space required to store these many networks, and the time required to execute them at runtime, prohibit their use in applications where test sets are large (e.g., ImageNet). In this paper, we present a method for compressing large, complex trained ensembles into a single network, where the knowledge from a variety of trained deep neural networks (DNNs) is distilled and transferred to a single DNN. In order to distill diverse knowledge from different trained (teacher) models, we propose to use adversarial-based learning strategy where we define a block-wise training loss to guide and optimize the predefined student network to recover the knowledge in teacher models, and to promote the discriminator network to distinguish teacher vs. student features simultaneously. Extensive experiments on CIFAR-10/100, SVHN, ImageNet and iMaterialist Challenge Dataset demonstrate the effectiveness of our MEAL method. On ImageNet, our ResNet-50 based MEAL achieves top-1/5 21.79%/5.99% val error, which outperforms the original model by 2.06%/1.14%. On iMaterialist Challenge Dataset, our MEAL obtains a remarkable improvement of top-3 1.15% (official evaluation metric) on a strong baseline model of ResNet-101.
In this paper, we propose a novel conditional-generative-adversarial-nets-based image captioning framework as an extension of traditional reinforcement-learning (RL)-based encoder-decoder architecture. To deal with the inconsistent evaluation problem among different objective language metrics, we are motivated to design some discriminator networks to automatically and progressively determine whether generated caption is human described or machine generated. Two kinds of discriminator architectures (CNN and RNN-based structures) are introduced since each has its own advantages. The proposed algorithm is generic so that it can enhance any existing RL-based image captioning framework and we show that the conventional RL training method is just a special case of our approach. Empirically, we show consistent improvements over all language evaluation metrics for different state-of-the-art image captioning models. In addition, the well-trained discriminators can also be viewed as objective image captioning evaluators
115 - Haichao Shi , Peng Li , Bo Wang 2018
Recently it has shown that the policy-gradient methods for reinforcement learning have been utilized to train deep end-to-end systems on natural language processing tasks. Whats more, with the complexity of understanding image content and diverse ways of describing image content in natural language, image captioning has been a challenging problem to deal with. To the best of our knowledge, most state-of-the-art methods follow a pattern of sequential model, such as recurrent neural networks (RNN). However, in this paper, we propose a novel architecture for image captioning with deep reinforcement learning to optimize image captioning tasks. We utilize two networks called policy network and value network to collaboratively generate the captions of images. The experiments are conducted on Microsoft COCO dataset, and the experimental results have verified the effectiveness of the proposed method.
Video captioning is a challenging task that requires a deep understanding of visual scenes. State-of-the-art methods generate captions using either scene-level or object-level information but without explicitly modeling object interactions. Thus, they often fail to make visually grounded predictions, and are sensitive to spurious correlations. In this paper, we propose a novel spatio-temporal graph model for video captioning that exploits object interactions in space and time. Our model builds interpretable links and is able to provide explicit visual grounding. To avoid unstable performance caused by the variable number of objects, we further propose an object-aware knowledge distillation mechanism, in which local object information is used to regularize global scene features. We demonstrate the efficacy of our approach through extensive experiments on two benchmarks, showing our approach yields competitive performance with interpretable predictions.
Automatically generating a human-like description for a given image is a potential research in artificial intelligence, which has attracted a great of attention recently. Most of the existing attention methods explore the mapping relationships between words in sentence and regions in image, such unpredictable matching manner sometimes causes inharmonious alignments that may reduce the quality of generated captions. In this paper, we make our efforts to reason about more accurate and meaningful captions. We first propose word attention to improve the correctness of visual attention when generating sequential descriptions word-by-word. The special word attention emphasizes on word importance when focusing on different regions of the input image, and makes full use of the internal annotation knowledge to assist the calculation of visual attention. Then, in order to reveal those incomprehensible intentions that cannot be expressed straightforwardly by machines, we introduce a new strategy to inject external knowledge extracted from knowledge graph into the encoder-decoder framework to facilitate meaningful captioning. Finally, we validate our model on two freely available captioning benchmarks: Microsoft COCO dataset and Flickr30k dataset. The results demonstrate that our approach achieves state-of-the-art performance and outperforms many of the existing approaches.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا