Do you want to publish a course? Click here

nCTEQ15HIX -- Extending nPDF Analyses into the High-$x$, Low $Q^2$ Region

72   0   0.0 ( 0 )
 Added by Fredrick Olness
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We use the nCTEQ analysis framework to investigate nuclear Parton Distribution Functions (nPDFs) in the region of large x and intermediate-to-low $Q$, with special attention to recent JLab Deep Inelastic Scattering data on nuclear targets. This data lies in a region which is often excluded by $W$ and $Q$ cuts in global nPDF analyses. As we relax these cuts, we enter a new kinematic region, which requires new phenomenology. In particular, we study the impact of i) target mass corrections, ii) higher twist corrections, iii) deuteron corrections, and iv) the shape of the nuclear PDF parametrization at large-$x$ close to one. Using the above tools, we produce a new nPDF set (named nCTEQ15HIX) which yields a good description of the new JLab data in this challenging kinematic region, and displays reduced uncertainties at large $x$, in particular for up and down quark flavors.



rate research

Read More

The DGLAP analyses of the nuclear parton distribution functions (nPDF) based on the global fits to the data are reviewed, and the results from EKS98 and HKM are compared. The usefulness of measuring hard probes in $pA$ collisions, at the LHC in particular, is demonstrated.
The neutrino deep inelastic scattering (DIS) data is very interesting for global analyses of proton and nuclear parton distribution functions (PDFs) since they provide crucial information on the strange quark distribution in the proton and allow for a better flavor decompositon of the PDFs. In order to use neutrino DIS data in a global analysis of proton PDFs nuclear effects need to be understood. We study these effects with the help of nuclear PDFs extracted from global analyses of charged-lepton DIS, Drell-Yan and neutrino DIS data at next-to-leading order in QCD.
The spatial distribution of charge and magnetization within the proton is encoded in the elastic form factors. These have been precisely measured in elastic electron scattering, and the combination of proton and neutron form factors allows for the separation of the up- and down-quark contributions. In this work, we extract the proton and neutron form factors from worlds data with an emphasis on precise new data covering the low-momentum region, which is sensitive to the large-scale structure of the nucleon. From these, we separate the up- and down-quark contributions to the proton form factors. We combine cross section and polarization measurements of elastic electron-proton scattering to separate the proton form factors and two-photon exchange (TPE) contributions. We combine the proton form factors with parameterization of the neutron form factor data and uncertainties to separate the up- and down-quark contributions to the protons charge and magnetic form factors. The extracted TPE corrections are compared to previous phenomenological extractions, TPE calculations, and direct measurements from the comparison of electron and positron scattering. The flavor-separated form factors are extracted and compared to models of the nucleon structure. With the inclusion of the precise new data, the extracted TPE contributions show a clear change ofsign at low $Q^2$, necessary to explain the high-$Q^2$ form factor discrepancy while being consistent with the known $Q^2 to 0$ limit. We find that the new Mainz data yield a significantly different result for the proton magnetic form factor and its flavor-separated contributions. We also observe that the RMS radius of both the up- and down-quark distributions are smaller than the RMS charge radius of the proton.
We derive a second-order linear differential equation for the leading order gluon distribution function G(x,Q^2) = xg(x,Q^2) which determines G(x,Q^2) directly from the proton structure function F_2^p(x,Q^2). This equation is derived from the leading order DGLAP evolution equation for F_2^p(x,Q^2), and does not require knowledge of either the individual quark distributions or the gluon evolution equation. Given an analytic expression that successfully reproduces the known experimental data for F_2^p(x,Q^2) in a domain x_min<=x<=x_max, Q_min^2<=Q^2<=Q_max^2 of the Bjorken variable x and the virtuality Q^2 in deep inelastic scattering, G(x,Q^2) is uniquely determined in the same domain. We give the general solution and illustrate the method using the recently proposed Froissart bound type parametrization of F_2^p(x,Q^2) of E. L. Berger, M. M. Block and C-I. Tan, PRL 98, 242001, (2007). Existing leading-order gluon distributions based on power-law description of individual parton distributions agree roughly with the new distributions for x>~10^-3 as they should, but are much larger for x<~10^-3.
The associated photoproduction of $KLambda$ from the proton in the low energy region is studied using an isobar model in which the non-resonant contributions are obtained from the non-linear sigma model with chiral SU(3) symmetry which predicts, in a natural way, the contact term with its coupling strength along with the coupling strengths of the various Born terms predicted by the non-linear sigma model. The present model is an extension of the non-linear sigma model with chiral SU(2) symmetry, used earlier to study the photo, electro, and neutrino productions of pions. In the resonance sector, the contributions from the well established nucleon resonances ($R$) in the $s$ channel, the hyperon resonances ($Y^{*}$) in the $u$ channel, and the kaon resonances ($K^{*}$ and $K_{1}$) in the $t$ channel having spin $le frac{3}{2}$ and mass $<2$ GeV with a significant branching ratio in $KLambda$ decay mode, have been considered. The strong and electromagnetic couplings of the $s$ channel nucleon resonances are taken from experiments while the couplings for the resonances in the $t$ and $u$ channels are fitted to reproduce the current data on the associated photoproduction of $KLambda$ in this energy region. The numerical results are presented for the total and differential cross sections and are compared with the available experimental data from CLAS and SAPHIR as well as with some of the recent theoretical models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا