Do you want to publish a course? Click here

Flavor decomposition of the nucleon electromagnetic form factors at low $Q^2$

221   0   0.0 ( 0 )
 Added by Issam Qattan
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

The spatial distribution of charge and magnetization within the proton is encoded in the elastic form factors. These have been precisely measured in elastic electron scattering, and the combination of proton and neutron form factors allows for the separation of the up- and down-quark contributions. In this work, we extract the proton and neutron form factors from worlds data with an emphasis on precise new data covering the low-momentum region, which is sensitive to the large-scale structure of the nucleon. From these, we separate the up- and down-quark contributions to the proton form factors. We combine cross section and polarization measurements of elastic electron-proton scattering to separate the proton form factors and two-photon exchange (TPE) contributions. We combine the proton form factors with parameterization of the neutron form factor data and uncertainties to separate the up- and down-quark contributions to the protons charge and magnetic form factors. The extracted TPE corrections are compared to previous phenomenological extractions, TPE calculations, and direct measurements from the comparison of electron and positron scattering. The flavor-separated form factors are extracted and compared to models of the nucleon structure. With the inclusion of the precise new data, the extracted TPE contributions show a clear change ofsign at low $Q^2$, necessary to explain the high-$Q^2$ form factor discrepancy while being consistent with the known $Q^2 to 0$ limit. We find that the new Mainz data yield a significantly different result for the proton magnetic form factor and its flavor-separated contributions. We also observe that the RMS radius of both the up- and down-quark distributions are smaller than the RMS charge radius of the proton.



rate research

Read More

The u- and d-quark contributions to the elastic nucleon electromagnetic form factors have been determined using experimental data on GEn, GMn, GpE, and GpM. Such a flavor separation of the form factors became possible up to 3.4 GeV2 with recent data on GEn from Hall A at JLab. At a negative four-momentum transfer squared Q2 above 1 GeV2, for both the u- and d-quark components, the ratio of the Pauli form factor to the Dirac form factor, F2/F1, was found to be almost constant, and for each of F2 and F1 individually, the d-quark portions of both form factors drop continuously with increasing Q2.
Precise proton and neutron form factor measurements at Jefferson Lab, using spin observables, have recently made a significant contribution to the unraveling of the internal structure of the nucleon. Accurate experimental measurements of the nucleon form factors are a test-bed for understanding how the nucleons static properties and dynamical behavior emerge from QCD, the theory of the strong interactions between quarks. There has been enormous theoretical progress, since the publication of the Jefferson Lab proton form factor ratio data, aiming at reevaluating the picture of the nucleon. We will review the experimental and theoretical developments in this field and discuss the outlook for the future.
119 - I. A. Qattan , J. Arrington 2017
The spatial distribution of charge and magnetization within the nucleon (proton and neutron) is encoded in the elastic electromagnetic form factors $G_E^{(p,n)}$ and $G_M^{(p,n)}$. These form factors have been precisely measured utilizing elastic electron scattering, and the combination of proton and neutron form factors allows for the separation of the up- and down-quark contributions to the nucleon form factors. We expand on our original analyses and extract the up- and down-quark contributions to the nucleon electromagnetic form factors from worldwide data with an emphasis on precise new data covering the low-momentum region, which is sensitive to the large-scale structure of the nucleon. From these, we construct the flavor-separated Dirac and Pauli form factors and their ratios, and compare the results to recent extractions and theoretical calculations and models.
We report on a recent calculation of all Roper-related electromagnetic transtions form factors, covering the range of energies that next-to-come planned experiments are expected to map. Direct reliable calculations were performed, within a Poincare covariant approach of the three-body bound-state problem, up to $Q^2/m^2_N$=6; approximated then by applying the Schlessinger point method and the results eventually extended up to $Q^2/m^2_Nsimeq$12 via analytic continuation.
By the analysis of the world data base of elastic electron scattering on the proton and the neutron (for the latter, in fact, on $^2H$ and $^3He$) important experimental insights have recently been gained into the flavor compositions of nucleon electromagnetic form factors. We report on testing the Graz Goldstone-boson-exchange relativistic constituent-quark model in comparison to the flavor contents in low-energy nucleons, as revealed from electron-scattering phenomenology. It is found that a satisfactory agreement is achieved between theory and experiment for momentum transfers up to $Q^2sim$ 4 GeV$^2$, relying on three-quark configurations only. Analogous studies have been extended to the $Delta$ and the hyperon electromagnetic form factors. For them we here show only some sample results in comparison to data from lattice quantum chromodynamics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا