Do you want to publish a course? Click here

Low-threshold operation of GaAs-based (GaIn)As/Ga(AsSb)/(GaIn)As W-quantum well lasers emitting in the O-band

138   0   0.0 ( 0 )
 Added by Ada Baeumner
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The influence of the growth conditions as well as the device design on the device performance of (GaIn)As/Ga(AsSb)/(GaIn)As W-quantum well lasers is investigated. To this purpose, the epitaxy process is scaled to full two inch substrates for improved homogeneity while the growth process is carried out in a single run for an improved quality. Furthermore, the optical confinement factor is increased by increasing the aluminum concentration within the cladding layers to a value of 65%. The procedure is carried out for devices with emission wavelengths of 1.26 micrometer as well as 1.30 micrometer. Differential efficiencies as high as 58% and threshold current densities as low as 0.16 kA/cm^2 are observed in case of devices emitting at 1.26 micrometer at room temperature. Furthermore, excellent characteristic temperatures of T_0=(72 plus minus 5)K and T_1=(293 plus minus 16) K are recorded in the temperature range between 10 degree Celsius and 100 degree Celsius. Devices emitting at 1.30 micrometer exhibit differential efficiencies of 31% and threshold current densities of 0.50 kA/cm^2 at room temperature. Further improvements of these properties and wavelength extension schemes are briefly discssused.



rate research

Read More

This paper discusses the temperature-dependent properties of (GaIn)As/Ga(AsSb)/(GaIn)As W-quantum well heterostructures for laser applications based on theoretical modeling as well as experimental findings. A microscopic theory is applied to discuss band bending effects giving rise to the characteristic blue shift with increasing charge carrier density observed in type-II heterostructures. Furthermore, gain spectra for a W-quantum well heterostructure are calculated up to high charge carrier densities. At these high charge carrier densities, the interplay between multiple type-II transitions results in broad and flat gain spectra with a spectral width of approximately 160 nm. Furthermore, the temperature-dependent properties of broad-area edge-emitting lasers are analyzed using electroluminescence as well as laser characteristic measurements. A first indication for the theoretically predicted broad gain spectra is presented and the interplay between the temperature-dependent red shift and the charge carrier density-dependent blue shift is discussed. A combination of these effects results in a significant reduction of the temperature-induced red shift of the emission wavelengths and even negative shift rates of (-0.10 plusminus 0.04) nm/K are achieved.
In contrast to conventional structures, efficient non-radiative carrier recombination counteracts the appearance of optical gain in graphene. Based on a microscopic and fully quantum-mechanical study of the coupled carrier, phonon, and photon dynamics in graphene, we present a strategy to obtain a long-lived gain: Integrating graphene into a photonic crystal nanocavity and applying a high-dielectric substrate gives rise to pronounced coherent light emission suggesting the design of graphene-based laser devices covering a broad spectral range.
Core-shell GaAs-based nanowires monolithically integrated on Si constitute a promising class of nanostructures that could enable light emitters for fast inter- and intrachip optical connections. We introduce and fabricate a novel coaxial GaAs/(In,Ga)As dot-in-a-well nanowire heterostructure to reach spontaneous emission in the Si transparent region, which is crucial for applications in Si photonics. Specifically, we achieve room temperature emission at 1.27 $mu$m in the telecommunication O band. The presence of quantum dots in the heterostructure is evidenced by a structural analysis based on scanning transmission electron microscopy. The spontaneous emission of these nanowire structures is investigated by cathodoluminescence and photoluminescence spectroscopy. Thermal redistribution of charge carriers to larger quantum dots explains the long wavelength emission achieved at room temperature. Finally, in order to demonstrate the feasibility of the presented nanowire heterostructures as electrically driven light emitters monolithically integrated on Si, a light emitting diode is fabricated exhibiting room-temperature electroluminescence at 1.26 $mu$m.
Modulation photoreflectance spectroscopy and Raman spectroscopy have been applied to study the electronic- and band-structure evolution in (Ga,Mn)As epitaxial layers with increasing Mn doping in the range of low Mn content, up to 1.2%. Structural and magnetic properties of the layers were characterized with high-resolution X-ray diffractometry and SQUID magnetometery, respectively. The revealed results of decrease in the band-gap transition energy with increasing Mn content in very low-doped (Ga,Mn)As layers with n-type conductivity are interpreted as a result of merging the Mn-related impurity band with the host GaAs valence band. On the other hand, an increase in the band-gap-transition energy with increasing Mn content in (Ga,Mn)As layers with higher Mn content and p-type conductivity indicates the Moss-Burstein shift of the absorption edge due to the Fermi level location within the valence band, determined by the free-hole concentration. The experimental results are consistent with the valence-band origin of mobile holes mediated ferromagnetic ordering in the (Ga,Mn)As diluted ferromagnetic semiconductor.
77 - P. Pfeffer , W. Zawadzki 2006
A five-level {Pp} model of the band structure for GaAs-type semiconductors is used to describe the spin $g^*$-factor and the cyclotron mass $m^*_c$ of conduction electrons in GaAs/Ga$_{1-x}$Al$_x$As quantum wells in an external magnetic field parallel to the growth direction. It is demonstrated that the previous theory of the $g^*$-factor in heterostructures is inadequate. Our approach is based on an iteration procedure of solving 14 coupled differential {Pp} equations. The applicability of the iteration procedure is verified. The final eigenenergy problem for the conduction subbands is reduced to two differential equations for the spin-up and spin-down states of consecutive Landau levels. It is shown that the bulk inversion asymmetry of III-V compounds is of importance for the spin $g^*$-factor. Our theory with no adjustable parameters gives an excellent description of experimental data on the electron spin $g^*$-factor in GaAs/Ga$_{0.67}$Al$_{0.33}$As rectangular quantum wells for different well widths between 3 and 12 nm. The same theory describes very well experimental cyclotron masses in GaAs/Ga$_{0.74}$Al$_{0.26}$As quantum wells for the well widths between 6 and 37 nm.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا