Do you want to publish a course? Click here

Toward Understanding the Influence of Individual Clients in Federated Learning

58   0   0.0 ( 0 )
 Added by Yihao Xue
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Federated learning allows mobile clients to jointly train a global model without sending their private data to a central server. Extensive works have studied the performance guarantee of the global model, however, it is still unclear how each individual client influences the collaborative training process. In this work, we defined a new notion, called {em Fed-Influence}, to quantify this influence over the model parameters, and proposed an effective and efficient algorithm to estimate this metric. In particular, our design satisfies several desirable properties: (1) it requires neither retraining nor retracing, adding only linear computational overhead to clients and the server; (2) it strictly maintains the tenets of federated learning, without revealing any clients local private data; and (3) it works well on both convex and non-convex loss functions, and does not require the final model to be optimal. Empirical results on a synthetic dataset and the FEMNIST dataset demonstrate that our estimation method can approximate Fed-Influence with small bias. Further, we show an application of Fed-Influence in model debugging.



rate research

Read More

Federated Learning (FL), arising as a novel secure learning paradigm, has received notable attention from the public. In each round of synchronous FL training, only a fraction of available clients are chosen to participate and the selection decision might have a significant effect on the training efficiency, as well as the final model performance. In this paper, we investigate the client selection problem under a volatile context, in which the local training of heterogeneous clients is likely to fail due to various kinds of reasons and in different levels of frequency. Intuitively, too much training failure might potentially reduce the training efficiency, while too much selection on clients with greater stability might introduce bias, and thereby result in degradation of the training effectiveness. To tackle this tradeoff, we in this paper formulate the client selection problem under joint consideration of effective participation and fairness. Further, we propose E3CS, a stochastic client selection scheme on the basis of an adversarial bandit solution, and we further corroborate its effectiveness by conducting real data-based experiments. According to the experimental results, our proposed selection scheme is able to achieve up to 2x faster convergence to a fixed model accuracy while maintaining the same level of final model accuracy, in comparison to the vanilla selection scheme in FL.
283 - Wei Dai , Yi Zhou , Nanqing Dong 2018
Many distributed machine learning (ML) systems adopt the non-synchronous execution in order to alleviate the network communication bottleneck, resulting in stale parameters that do not reflect the latest updates. Despite much development in large-scale ML, the effects of staleness on learning are inconclusive as it is challenging to directly monitor or control staleness in complex distributed environments. In this work, we study the convergence behaviors of a wide array of ML models and algorithms under delayed updates. Our extensive experiments reveal the rich diversity of the effects of staleness on the convergence of ML algorithms and offer insights into seemingly contradictory reports in the literature. The empirical findings also inspire a new convergence analysis of stochastic gradient descent in non-convex optimization under staleness, matching the best-known convergence rate of O(1/sqrt{T}).
109 - Zichen Ma , Yu Lu , Zihan Lu 2021
Federated learning involves training machine learning models over devices or data silos, such as edge processors or data warehouses, while keeping the data local. Training in heterogeneous and potentially massive networks introduces bias into the system, which is originated from the non-IID data and the low participation rate in reality. In this paper, we propose Elastic Federated Learning (EFL), an unbiased algorithm to tackle the heterogeneity in the system, which makes the most informative parameters less volatile during training, and utilizes the incomplete local updates. It is an efficient and effective algorithm that compresses both upstream and downstream communications. Theoretically, the algorithm has convergence guarantee when training on the non-IID data at the low participation rate. Empirical experiments corroborate the competitive performance of EFL framework on the robustness and the efficiency.
Federated Learning is a new learning scheme for collaborative training a shared prediction model while keeping data locally on participating devices. In this paper, we study a new model of multiple federated learning services at the multi-access edge computing server. Accordingly, the sharing of CPU resources among learning services at each mobile device for the local training process and allocating communication resources among mobile devices for exchanging learning information must be considered. Furthermore, the convergence performance of different learning services depends on the hyper-learning rate parameter that needs to be precisely decided. Towards this end, we propose a joint resource optimization and hyper-learning rate control problem, namely MS-FEDL, regarding the energy consumption of mobile devices and overall learning time. We design a centralized algorithm based on the block coordinate descent method and a decentralized JP-miADMM algorithm for solving the MS-FEDL problem. Different from the centralized approach, the decentralized approach requires many iterations to obtain but it allows each learning service to independently manage the local resource and learning process without revealing the learning service information. Our simulation results demonstrate the convergence performance of our proposed algorithms and the superior performance of our proposed algorithms compared to the heuristic strategy.
Federated learning, as a distributed learning that conducts the training on the local devices without accessing to the training data, is vulnerable to dirty-label data poisoning adversarial attacks. We claim that the federated learning model has to avoid those kind of adversarial attacks through filtering out the clients that manipulate the local data. We propose a dynamic federated learning model that dynamically discards those adversarial clients, which allows to prevent the corruption of the global learning model. We evaluate the dynamic discarding of adversarial clients deploying a deep learning classification model in a federated learning setting, and using the EMNIST Digits and Fashion MNIST image classification datasets. Likewise, we analyse the capacity of detecting clients with poor data distribution and reducing the number of rounds of learning by selecting the clients to aggregate. The results show that the dynamic selection of the clients to aggregate enhances the performance of the global learning model, discards the adversarial and poor clients and reduces the rounds of learning.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا