Do you want to publish a course? Click here

On the formality of nearly Kahler manifolds and of Joyces examples in $G_2$-holonomy

92   0   0.0 ( 0 )
 Added by Manuel Amann
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

It is a prominent conjecture (relating Riemannian geometry and algebraic topology) that all simply-connected compact manifolds of special holonomy should be formal spaces, i.e., their rational homotopy type should be derivable from their rational cohomology algebra already -- an as prominent as particular property in rational homotopy theory. Special interest now lies on exceptional holonomy $G_2$ and $Spin(7)$. In this article we provide a method of how to confirm that the famous Joyce examples of holonomy $G_2$ indeed are formal spaces; we concretely exert this computation for one example which may serve as a blueprint for the remaining Joyce examples (potentially also of holonomy $Spin(7)$). These considerations are preceded by another result identifying the formality of manifolds admitting special structures: we prove the formality of nearly Kahler manifolds. A connection between these two results can be found in the fact that both special holonomy and nearly Kahler naturally generalize compact Kahler manifolds, whose formality is a classical and celebrated theorem by Deligne-Griffiths-Morgan-Sullivan.



rate research

Read More

235 - Andrei Moroianu 2009
The moduli space NK of infinitesimal deformations of a nearly Kahler structure on a compact 6-dimensional manifold is described by a certain eigenspace of the Laplace operator acting on co-closed primitive (1,1) forms. Using the Hermitian Laplace operator and some representation theory, we compute the space NK on all 6-dimensional homogeneous nearly Kahler manifolds. It turns out that the nearly Kahler structure is rigid except for the flag manifold F(1,2)=SU_3/T^2, which carries an 8-dimensional moduli space of infinitesimal nearly Kahler deformations, modeled on the Lie algebra su_3 of the isometry group.
102 - Christopher Scaduto 2020
Crowley and Nordstr{o}m introduced an invariant of $G_2$-structures on the tangent bundle of a closed 7-manifold, taking values in the integers modulo 48. Using the spectral description of this invariant due to Crowley, Goette and Nordstr{o}m, we compute it for many of the closed torsion-free $G_2$-manifolds defined by Joyces generalized Kummer construction.
We prove that a 2n-dimensional compact homogeneous nearly Kahler manifold with strictly positive sectional curvature is isometric to CP^{n}, equipped with the symmetric Fubini-Study metric or with the standard Sp(m)-homogeneous metric, n =2m-1, or to S^{6} as Riemannian manifold with constant sectional curvature. This is a positive answer for a revised version of a conjecture given by Gray.
147 - Thomas Friedrich 2005
In some other context, the question was raised how many nearly Kahler structures exist on the sphere $S^6$ equipped with the standard Riemannian metric. In this short note, we prove that, up to isometry, there exists only one. This is a consequence of the description of the eigenspace to the eigenvalue $lambda = 12$ of the Laplacian acting on 2-forms. A similar result concerning nearly parallel $G_2$-structures on the round sphere $S^7$ holds, too. An alternative proof by Riemannian Killing spinors is also indicated.
157 - Andrew Clarke 2013
We give a construction of $G_2$ and $Spin(7)$ instantons on exceptional holonomy manifolds constructed by Bryant and Salamon, by using an ansatz of spherical symmetry coming from the manifolds being the total spaces of rank-4 vector bundles. In the $G_2$ case, we show that, in the asymptotically conical model, the connections are asymptotic to Hermitian Yang-Mills connections on the nearly Kahler $S^3times S^3$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا