No Arabic abstract
The moduli space NK of infinitesimal deformations of a nearly Kahler structure on a compact 6-dimensional manifold is described by a certain eigenspace of the Laplace operator acting on co-closed primitive (1,1) forms. Using the Hermitian Laplace operator and some representation theory, we compute the space NK on all 6-dimensional homogeneous nearly Kahler manifolds. It turns out that the nearly Kahler structure is rigid except for the flag manifold F(1,2)=SU_3/T^2, which carries an 8-dimensional moduli space of infinitesimal nearly Kahler deformations, modeled on the Lie algebra su_3 of the isometry group.
We prove that a 2n-dimensional compact homogeneous nearly Kahler manifold with strictly positive sectional curvature is isometric to CP^{n}, equipped with the symmetric Fubini-Study metric or with the standard Sp(m)-homogeneous metric, n =2m-1, or to S^{6} as Riemannian manifold with constant sectional curvature. This is a positive answer for a revised version of a conjecture given by Gray.
It is a prominent conjecture (relating Riemannian geometry and algebraic topology) that all simply-connected compact manifolds of special holonomy should be formal spaces, i.e., their rational homotopy type should be derivable from their rational cohomology algebra already -- an as prominent as particular property in rational homotopy theory. Special interest now lies on exceptional holonomy $G_2$ and $Spin(7)$. In this article we provide a method of how to confirm that the famous Joyce examples of holonomy $G_2$ indeed are formal spaces; we concretely exert this computation for one example which may serve as a blueprint for the remaining Joyce examples (potentially also of holonomy $Spin(7)$). These considerations are preceded by another result identifying the formality of manifolds admitting special structures: we prove the formality of nearly Kahler manifolds. A connection between these two results can be found in the fact that both special holonomy and nearly Kahler naturally generalize compact Kahler manifolds, whose formality is a classical and celebrated theorem by Deligne-Griffiths-Morgan-Sullivan.
A special Kahler-Ricci potential on a Kahler manifold is any nonconstant $C^infty$ function $tau$ such that $J( ablatau)$ is a Killing vector field and, at every point with $dtau e 0$, all nonzero tangent vectors orthogonal to $ ablatau$ and $J( ablatau)$ are eigenvectors of both $ abla dtau$ and the Ricci tensor. For instance, this is always the case if $tau$ is a nonconstant $C^infty$ function on a Kahler manifold $(M,g)$ of complex dimension $m>2$ and the metric $tilde g=g/tau^2$, defined wherever $tau e 0$, is Einstein. (When such $tau$ exists, $(M,g)$ may be called {it almost-everywhere conformally Einstein}.) We provide a complete classification of compact Kahler manifolds with special Kahler-Ricci potentials and use it to prove a structure theorem for compact Kahler manifolds of any complex dimension $m>2$ which are almost-everywhere conformally Einstein.
We show that a closed almost Kahler 4-manifold of globally constant holomorphic sectional curvature $kgeq 0$ with respect to the canonical Hermitian connection is automatically Kahler. The same result holds for $k<0$ if we require in addition that the Ricci curvature is J-invariant. The proofs are based on the observation that such manifolds are self-dual, so that Chern-Weil theory implies useful integral formulas, which are then combined with results from Seiberg--Witten theory.
In a paper by Angella, Otal, Ugarte, and Villacampa, the authors conjectured that on a compact Hermitian manifold, if a Gauduchon connection other than Chern or Strominger is Kahler-like, then the Hermitian metric must be Kahler. They also conjectured that if two Gauduchon connections are both Kahler-like, then the metric must be Kahler. In this paper, we discuss some partial answers to the first conjecture, and give a proof to the second conjecture. In the process, we discovered an interesting `duality phenomenon amongst Gauduchon connections, which seems to be intimately tied to the question, though we do not know if there is any underlying reason for that from physics.