Do you want to publish a course? Click here

Uncertainty-Aware Label Refinement for Sequence Labeling

296   0   0.0 ( 0 )
 Added by Jiacheng Ye
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Conditional random fields (CRF) for label decoding has become ubiquitous in sequence labeling tasks. However, the local label dependencies and inefficient Viterbi decoding have always been a problem to be solved. In this work, we introduce a novel two-stage label decoding framework to model long-term label dependencies, while being much more computationally efficient. A base model first predicts draft labels, and then a novel two-stream self-attention model makes refinements on these draft predictions based on long-range label dependencies, which can achieve parallel decoding for a faster prediction. In addition, in order to mitigate the side effects of incorrect draft labels, Bayesian neural networks are used to indicate the labels with a high probability of being wrong, which can greatly assist in preventing error propagation. The experimental results on three sequence labeling benchmarks demonstrated that the proposed method not only outperformed the CRF-based methods but also greatly accelerated the inference process.



rate research

Read More

Linguistic sequence labeling is a general modeling approach that encompasses a variety of problems, such as part-of-speech tagging and named entity recognition. Recent advances in neural networks (NNs) make it possible to build reliable models without handcrafted features. However, in many cases, it is hard to obtain sufficient annotations to train these models. In this study, we develop a novel neural framework to extract abundant knowledge hidden in raw texts to empower the sequence labeling task. Besides word-level knowledge contained in pre-trained word embeddings, character-aware neural language models are incorporated to extract character-level knowledge. Transfer learning techniques are further adopted to mediate different components and guide the language model towards the key knowledge. Comparing to previous methods, these task-specific knowledge allows us to adopt a more concise model and conduct more efficient training. Different from most transfer learning methods, the proposed framework does not rely on any additional supervision. It extracts knowledge from self-contained order information of training sequences. Extensive experiments on benchmark datasets demonstrate the effectiveness of leveraging character-level knowledge and the efficiency of co-training. For example, on the CoNLL03 NER task, model training completes in about 6 hours on a single GPU, reaching F1 score of 91.71$pm$0.10 without using any extra annotation.
While few-shot classification has been widely explored with similarity based methods, few-shot sequence labeling poses a unique challenge as it also calls for modeling the label dependencies. To consider both the item similarity and label dependency, we propose to leverage the conditional random fields (CRFs) in few-shot sequence labeling. It calculates emission score with similarity based methods and obtains transition score with a specially designed transfer mechanism. When applying CRF in the few-shot scenarios, the discrepancy of label sets among different domains makes it hard to use the label dependency learned in prior domains. To tackle this, we introduce the dependency transfer mechanism that transfers abstract label transition patterns. In addition, the similarity methods rely on the high quality sample representation, which is challenging for sequence labeling, because sense of a word is different when measuring its similarity to words in different sentences. To remedy this, we take advantage of recent contextual embedding technique, and further propose a pair-wise embedder. It provides additional certainty for word sense by embedding query and support sentence pairwisely. Experimental results on slot tagging and named entity recognition show that our model significantly outperforms the strongest few-shot learning baseline by 11.76 (21.2%) and 12.18 (97.7%) F1 scores respectively in the one-shot setting.
Label smoothing has been shown to be an effective regularization strategy in classification, that prevents overfitting and helps in label de-noising. However, extending such methods directly to seq2seq settings, such as Machine Translation, is challenging: the large target output space of such problems makes it intractable to apply label smoothing over all possible outputs. Most existing approaches for seq2seq settings either do token level smoothing, or smooth over sequences generated by randomly substituting tokens in the target sequence. Unlike these works, in this paper, we propose a technique that smooths over emph{well formed} relevant sequences that not only have sufficient n-gram overlap with the target sequence, but are also emph{semantically similar}. Our method shows a consistent and significant improvement over the state-of-the-art techniques on different datasets.
Detecting disfluencies in spontaneous speech is an important preprocessing step in natural language processing and speech recognition applications. Existing works for disfluency detection have focused on designing a single objective only for disfluency detection, while auxiliary objectives utilizing linguistic information of a word such as named entity or part-of-speech information can be effective. In this paper, we focus on detecting disfluencies on spoken transcripts and propose a method utilizing named entity recognition (NER) and part-of-speech (POS) as auxiliary sequence labeling (SL) tasks for disfluency detection. First, we investigate cases that utilizing linguistic information of a word can prevent mispredicting important words and can be helpful for the correct detection of disfluencies. Second, we show that training a disfluency detection model with auxiliary SL tasks can improve its F-score in disfluency detection. Then, we analyze which auxiliary SL tasks are influential depending on baseline models. Experimental results on the widely used English Switchboard dataset show that our method outperforms the previous state-of-the-art in disfluency detection.
Lack of training data in low-resource languages presents huge challenges to sequence labeling tasks such as named entity recognition (NER) and machine reading comprehension (MRC). One major obstacle is the errors on the boundary of predicted answers. To tackle this problem, we propose CalibreNet, which predicts answers in two steps. In the first step, any existing sequence labeling method can be adopted as a base model to generate an initial answer. In the second step, CalibreNet refines the boundary of the initial answer. To tackle the challenge of lack of training data in low-resource languages, we dedicatedly develop a novel unsupervised phrase boundary recovery pre-training task to enhance the multilingual boundary detection capability of CalibreNet. Experiments on two cross-lingual benchmark datasets show that the proposed approach achieves SOTA results on zero-shot cross-lingual NER and MRC tasks.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا