Do you want to publish a course? Click here

CalibreNet: Calibration Networks for Multilingual Sequence Labeling

94   0   0.0 ( 0 )
 Added by Ming Gong
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Lack of training data in low-resource languages presents huge challenges to sequence labeling tasks such as named entity recognition (NER) and machine reading comprehension (MRC). One major obstacle is the errors on the boundary of predicted answers. To tackle this problem, we propose CalibreNet, which predicts answers in two steps. In the first step, any existing sequence labeling method can be adopted as a base model to generate an initial answer. In the second step, CalibreNet refines the boundary of the initial answer. To tackle the challenge of lack of training data in low-resource languages, we dedicatedly develop a novel unsupervised phrase boundary recovery pre-training task to enhance the multilingual boundary detection capability of CalibreNet. Experiments on two cross-lingual benchmark datasets show that the proposed approach achieves SOTA results on zero-shot cross-lingual NER and MRC tasks.



rate research

Read More

Detecting disfluencies in spontaneous speech is an important preprocessing step in natural language processing and speech recognition applications. Existing works for disfluency detection have focused on designing a single objective only for disfluency detection, while auxiliary objectives utilizing linguistic information of a word such as named entity or part-of-speech information can be effective. In this paper, we focus on detecting disfluencies on spoken transcripts and propose a method utilizing named entity recognition (NER) and part-of-speech (POS) as auxiliary sequence labeling (SL) tasks for disfluency detection. First, we investigate cases that utilizing linguistic information of a word can prevent mispredicting important words and can be helpful for the correct detection of disfluencies. Second, we show that training a disfluency detection model with auxiliary SL tasks can improve its F-score in disfluency detection. Then, we analyze which auxiliary SL tasks are influential depending on baseline models. Experimental results on the widely used English Switchboard dataset show that our method outperforms the previous state-of-the-art in disfluency detection.
123 - Lei Shu , Hu Xu , Bing Liu 2019
One key task of fine-grained sentiment analysis on reviews is to extract aspects or features that users have expressed opinions on. This paper focuses on supervised aspect extraction using a modified CNN called controlled CNN (Ctrl). The modified CNN has two types of control modules. Through asynchronous parameter updating, it prevents over-fitting and boosts CNNs performance significantly. This model achieves state-of-the-art results on standard aspect extraction datasets. To the best of our knowledge, this is the first paper to apply control modules to aspect extraction.
148 - Edouard Grave 2013
Most natural language processing systems based on machine learning are not robust to domain shift. For example, a state-of-the-art syntactic dependency parser trained on Wall Street Journal sentences has an absolute drop in performance of more than ten points when tested on textual data from the Web. An efficient solution to make these methods more robust to domain shift is to first learn a word representation using large amounts of unlabeled data from both domains, and then use this representation as features in a supervised learning algorithm. In this paper, we propose to use hidden Markov models to learn word representations for part-of-speech tagging. In particular, we study the influence of using data from the source, the target or both domains to learn the representation and the different ways to represent words using an HMM.
Sequence-to-sequence (seq2seq) approach for low-resource ASR is a relatively new direction in speech research. The approach benefits by performing model training without using lexicon and alignments. However, this poses a new problem of requiring more data compared to conventional DNN-HMM systems. In this work, we attempt to use data from 10 BABEL languages to build a multi-lingual seq2seq model as a prior model, and then port them towards 4 other BABEL languages using transfer learning approach. We also explore different architectures for improving the prior multilingual seq2seq model. The paper also discusses the effect of integrating a recurrent neural network language model (RNNLM) with a seq2seq model during decoding. Experimental results show that the transfer learning approach from the multilingual model shows substantial gains over monolingual models across all 4 BABEL languages. Incorporating an RNNLM also brings significant improvements in terms of %WER, and achieves recognition performance comparable to the models trained with twice more training data.
Linguistic sequence labeling is a general modeling approach that encompasses a variety of problems, such as part-of-speech tagging and named entity recognition. Recent advances in neural networks (NNs) make it possible to build reliable models without handcrafted features. However, in many cases, it is hard to obtain sufficient annotations to train these models. In this study, we develop a novel neural framework to extract abundant knowledge hidden in raw texts to empower the sequence labeling task. Besides word-level knowledge contained in pre-trained word embeddings, character-aware neural language models are incorporated to extract character-level knowledge. Transfer learning techniques are further adopted to mediate different components and guide the language model towards the key knowledge. Comparing to previous methods, these task-specific knowledge allows us to adopt a more concise model and conduct more efficient training. Different from most transfer learning methods, the proposed framework does not rely on any additional supervision. It extracts knowledge from self-contained order information of training sequences. Extensive experiments on benchmark datasets demonstrate the effectiveness of leveraging character-level knowledge and the efficiency of co-training. For example, on the CoNLL03 NER task, model training completes in about 6 hours on a single GPU, reaching F1 score of 91.71$pm$0.10 without using any extra annotation.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا