Do you want to publish a course? Click here

Crowd-Driven Mapping, Localization and Planning

148   0   0.0 ( 0 )
 Added by Tingxiang Fan
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Navigation in dense crowds is a well-known open problem in robotics with many challenges in mapping, localization, and planning. Traditional solutions consider dense pedestrians as passive/active moving obstacles that are the cause of all troubles: they negatively affect the sensing of static scene landmarks and must be actively avoided for safety. In this paper, we provide a new perspective: the crowd flow locally observed can be treated as a sensory measurement about the surrounding scenario, encoding not only the scenes traversability but also its social navigation preference. We demonstrate that even using the crowd-flow measurement alone without any sensing about static obstacles, our method still accomplishes good results for mapping, localization, and social-aware planning in dense crowds. Videos of the experiments are available at https://sites.google.com/view/crowdmapping.



rate research

Read More

We investigate the problem of autonomous object classification and semantic SLAM, which in general exhibits a tight coupling between classification, metric SLAM and planning under uncertainty. We contribute a unified framework for inference and belief space planning (BSP) that addresses prominent sources of uncertainty in this context: classification aliasing (classier cannot distinguish between candidate classes from certain viewpoints), classifier epistemic uncertainty (classifier receives data far from its training set), and localization uncertainty (camera and object poses are uncertain). Specifically, we develop two methods for maintaining a joint distribution over robot and object poses, and over posterior class probability vector that considers epistemic uncertainty in a Bayesian fashion. The first approach is Multi-Hybrid (MH), where multiple hybrid beliefs over poses and classes are maintained to approximate the joint belief over poses and posterior class probability. The second approach is Joint Lambda Pose (JLP), where the joint belief is maintained directly using a novel JLP factor. Furthermore, we extend both methods to BSP, planning while reasoning about future posterior epistemic uncertainty indirectly, or directly via a novel information-theoretic reward function. Both inference methods utilize a novel viewpoint-dependent classifier uncertainty model that leverages the coupling between poses and classification scores and predicts the epistemic uncertainty from certain viewpoints. In addition, this model is used to generate predicted measurements during planning. To the best of our knowledge, this is the first work that reasons about classifier epistemic uncertainty within semantic SLAM and BSP.
Planning whole-body motions while taking into account the terrain conditions is a challenging problem for legged robots since the terrain model might produce many local minima. Our coupled planning method uses stochastic and derivatives-free search to plan both foothold locations and horizontal motions due to the local minima produced by the terrain model. It jointly optimizes body motion, step duration and foothold selection, and it models the terrain as a cost-map. Due to the novel attitude planning method, the horizontal motion plans can be applied to various terrain conditions. The attitude planner ensures the robot stability by imposing limits to the angular acceleration. Our whole-body controller tracks compliantly trunk motions while avoiding slippage, as well as kinematic and torque limits. Despite the use of a simplified model, which is restricted to flat terrain, our approach shows remarkable capability to deal with a wide range of non-coplanar terrains. The results are validated by experimental trials and comparative evaluations in a series of terrains of progressively increasing complexity.
We present an approach for multi-robot consistent distributed localization and semantic mapping in an unknown environment, considering scenarios with classification ambiguity, where objects visual appearance generally varies with viewpoint. Our approach addresses such a setting by maintaining a distributed posterior hybrid belief over continuous localization and discrete classification variables. In particular, we utilize a viewpoint-dependent classifier model to leverage the coupling between semantics and geometry. Moreover, our approach yields a consistent estimation of both continuous and discrete variables, with the latter being addressed for the first time, to the best of our knowledge. We evaluate the performance of our approach in a multi-robot semantic SLAM simulation and in a real-world experiment, demonstrating an increase in both classification and localization accuracy compared to maintaining a hybrid belief using local information only.
This paper discusses a large-scale and long-term mapping and localization scenario using the maplab open-source framework. We present a brief overview of the specific algorithms in the system that enable building a consistent map from multiple sessions. We then demonstrate that such a map can be reused even a few months later for efficient 6-DoF localization and also new trajectories can be registered within the existing 3D model. The datasets presented in this paper are made publicly available.
Due to the complicated procedure and costly hardware, Simultaneous Localization and Mapping (SLAM) has been heavily dependent on public datasets for drill and evaluation, leading to many impressive demos and good benchmark scores. However, with a huge contrast, SLAM is still struggling on the way towards mature deployment, which sounds a warning: some of the datasets are overexposed, causing biased usage and evaluation. This raises the problem on how to comprehensively access the existing datasets and correctly select them. Moreover, limitations do exist in current datasets, then how to build new ones and which directions to go? Nevertheless, a comprehensive survey which can tackle the above issues does not exist yet, while urgently demanded by the community. To fill the gap, this paper strives to cover a range of cohesive topics about SLAM related datasets, including general collection methodology and fundamental characteristic dimensions, SLAM related tasks taxonomy and datasets categorization, introduction of state-of-the-arts, overview and comparison of existing datasets, review of evaluation criteria, and analyses and discussions about current limitations and future directions, looking forward to not only guiding the dataset selection, but also promoting the dataset research.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا