Do you want to publish a course? Click here

Quantum Cosmology with vector torsion

62   0   0.0 ( 0 )
 Added by Ammar Kasem
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We extend the treatment of quantum cosmology to a manifold with torsion. We adopt a model of Einstein-Cartan-Sciama-Kibble compatible with the cosmological principle. The universe wavefunction will be subject to a $mathcal{PT}$-symmetric Hamiltonian. With a vanishing energy-momentum tensor, the universe evolution in the semiclassical and classical regimes is shown to reflect a two-stage inflationary process induced by torsion.



rate research

Read More

We study cosmological consequences of the dark spinor model when torsion is included. Only some components of the torsion are allowed to be non-vanishing in homogeneous and isotropic cosmology, but there exist freedoms in the choice of these components which is consistent with the evolution equations. We exploit this and discuss several cases which can result in interesting cosmological consequences. Especially, we show that there exist exact cosmological solutions in which the Universe began its acceleration only recently and this solution is an attractor. This corresponds to a specific form of the torsion with a mild fine-tuning which can address the coincidence problem.
We study the properties of gravity and bulk fields living in a torsion warped braneworld. The torsion is driven by a background vector whose norm provides a source for the bulk cosmological constant. For a vector as the derivative of a scalar field, we find new isotropic and anisotropic thick brane geometries. We analyse the features of bosonic and fermionic fields in this isotropic and in standing wave scenarios. The background vector provides nonminimal coupling between the field and the geometry leading to modifications in the Kaluza-Klein states. The spinor connection is modified by the torsion and a derivative Yukawa-like coupling is proposed. The effects of these new couplings are investigated.
A Friedmann like cosmological model in Einstein-Cartan framework is studied when the torsion function is assumed to be proportional to a single $phi(t)$ function coming just from the spin vector contribution of ordinary matter. By analysing four different types of torsion function written in terms of one, two and three free parameters, we found that a model with $phi(t)=- alpha H(t) big({rho_{m}(t)}/{rho_{0c}}big)^n$ is totally compatible with recent cosmological data, where $alpha$ and $n$ are free parameters to be constrained from observations, $rho_m$ is the matter energy density and $rho_{0c}$ the critical density. The recent accelerated phase of expansion of the universe is correctly reproduced by the contribution coming from torsion function, with a deceleration parameter indicating a transition redshift of about $0.65$.
We propose a generalizing gauge-invariant model of propagating torsion which couples to the Maxwell field and to charged particles. As a result we have an Abelian gauge invariant action which leads to a theory with nonzero torsion and which is consistent with available experimental data.
We study the effects of an information-theoretically motivated nonlinear correction to the Wheeler-deWitt equation in the minisuperspace scheme for flat, $k=0$, Friedmann-Robertson-Walker (FRW) universes. When the only matter is a cosmological constant, the nonlinearity can provide a barrier that screens the original Big Bang, leading to the quantum creation of a universe through tunneling just as in the $k=1$ case. When the matter is instead a free massless scalar field, the nonlinearity can again prevent a contracting classical universe from reaching zero size by creating a bounce. Our studies here are self-consistent to leading order in perturbation theory for the nonlinear effects.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا