No Arabic abstract
We study cosmological consequences of the dark spinor model when torsion is included. Only some components of the torsion are allowed to be non-vanishing in homogeneous and isotropic cosmology, but there exist freedoms in the choice of these components which is consistent with the evolution equations. We exploit this and discuss several cases which can result in interesting cosmological consequences. Especially, we show that there exist exact cosmological solutions in which the Universe began its acceleration only recently and this solution is an attractor. This corresponds to a specific form of the torsion with a mild fine-tuning which can address the coincidence problem.
We extend the treatment of quantum cosmology to a manifold with torsion. We adopt a model of Einstein-Cartan-Sciama-Kibble compatible with the cosmological principle. The universe wavefunction will be subject to a $mathcal{PT}$-symmetric Hamiltonian. With a vanishing energy-momentum tensor, the universe evolution in the semiclassical and classical regimes is shown to reflect a two-stage inflationary process induced by torsion.
This Thesis is devoted to the study of Metric-Affine Theories of Gravity and Applications to Cosmology. The thesis is organized as follows. In the first Chapter we define the various geometrical quantities that characterize a non-Riemannian geometry. In the second Chapter we explore the MAG model building. In Chapter 3 we use a well known procedure to excite torsional degrees of freedom by coupling surface terms to scalars. Then, in Chapter 4 which seems to be the most important Chapter of the thesis, at least with regards to its use in applications, we present a step by step way to solve for the affine connection in non-Riemannian geometries, for the first time in the literature. A peculiar f(R) case is studied in Chapter 5. This is the conformally (as well as projective invariant) invariant theory f(R)=a R^{2} which contains an undetermined scalar degree of freedom. We then turn our attention to Cosmology with torsion and non-metricity (Chapter 6). In Chapter 7, we formulate the necessary setup for the $1+3$ splitting of the generalized spacetime. Having clarified the subtle points (that generally stem from non-metricity) in the aforementioned formulation we carefully derive the generalized Raychaudhuri equation in the presence of both torsion and non-metricity (along with curvature). This, as it stands, is the most general form of the Raychaudhuri equation that exists in the literature. We close this Thesis by considering three possible scale transformations that one can consider in Metric-Affine Geometry.
A Friedmann like cosmological model in Einstein-Cartan framework is studied when the torsion function is assumed to be proportional to a single $phi(t)$ function coming just from the spin vector contribution of ordinary matter. By analysing four different types of torsion function written in terms of one, two and three free parameters, we found that a model with $phi(t)=- alpha H(t) big({rho_{m}(t)}/{rho_{0c}}big)^n$ is totally compatible with recent cosmological data, where $alpha$ and $n$ are free parameters to be constrained from observations, $rho_m$ is the matter energy density and $rho_{0c}$ the critical density. The recent accelerated phase of expansion of the universe is correctly reproduced by the contribution coming from torsion function, with a deceleration parameter indicating a transition redshift of about $0.65$.
We propose a generalizing gauge-invariant model of propagating torsion which couples to the Maxwell field and to charged particles. As a result we have an Abelian gauge invariant action which leads to a theory with nonzero torsion and which is consistent with available experimental data.
We study the variational principle on a Hilbert-Einstein action in an extended geometry with torsion taking into account non-trivial boundary conditions. We obtain an effective energy-momentum tensor that has its source in the torsion, which represents the matter geometrically induced. We explore about the existence of magnetic monopoles and gravitational waves in this torsional geometry. We conclude that the boundary terms can be identified as possible sources for the cosmological constant and torsion as the source of magnetic monopoles. We examine an example in which gravitational waves are produced during a de Sitter inflationary expansion of the universe.