Do you want to publish a course? Click here

Duality between two generalized Aubry-Andre models with exact mobility edges

92   0   0.0 ( 0 )
 Added by Yucheng Wang
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

A mobility edge (ME) in energy separating extended from localized states is a central concept in understanding various fundamental phenomena like the metal-insulator transition in disordered systems. In one-dimensional quasiperiodic systems, there exist a few models with exact MEs, and these models are beneficial to provide exact understanding of ME physics. Here we investigate two widely studied models including exact MEs, one with an exponential hopping and one with a special form of incommensurate on-site potential. We analytically prove that the two models are mutually dual, and further give the numerical verification by calculating the inverse participation ratio and Husimi function. The exact MEs of the two models are also obtained by calculating the localization lengths and using the duality relations. Our result may provide insight into realizing and observing exact MEs in both theory and experiment.



rate research

Read More

98 - Tong Liu , Hao Guo , Yong Pu 2020
We demonstrate the existence of generalized Aubry-Andre self-duality in a class of non-Hermitian quasi-periodic lattices with complex potentials. From the self-duality relations, the analytical expression of mobility edges is derived. Compared to Hermitian systems, mobility edges in non-Hermitian ones not only separate localized from extended states, but also indicate the coexistence of complex and real eigenenergies, making it possible a topological characterization of mobility edges. An experimental scheme, based on optical pulse propagation in synthetic photonic mesh lattices, is suggested to implement a non-Hermitian quasi-crystal displaying mobility edges.
129 - Yucheng Wang , Xu Xia , Long Zhang 2020
The mobility edges (MEs) in energy which separate extended and localized states are a central concept in understanding the localization physics. In one-dimensional (1D) quasiperiodic systems, while MEs may exist for certain cases, the analytic results which allow for an exact understanding are rare. Here we uncover a class of exactly solvable 1D models with MEs in the spectra, where quasiperiodic on-site potentials are inlaid in the lattice with equally spaced sites. The analytical solutions provide the exact results not only for the MEs, but also for the localization and extended features of all states in the spectra, as derived through computing the Lyapunov exponents from Avilas global theory, and also numerically verified by calculating the fractal dimension. We further propose a novel scheme with experimental feasibility to realize our model based on an optical Raman lattice, which paves the way for experimental exploration of the predicted exact ME physics.
106 - Xu Xia , Ke Huang , Shubo Wang 2021
Quantum localization in 1D non-Hermitian systems, especially the search for exact single-particle mobility edges, has attracted considerable interest recently. While much progress has been made, the available methods to determine the ME of such models are still limited. In this work, we propose a new method to determine the exact mobility edge in a large class of 1D non-Hermitian quasiperiodic models with parity-time ($mathcal{PT}$) symmetry. We illustrate our method by studying a specific model. We first use our method to determine the energy-dependent mobility edge as well as the spectrum for localized eigenstates in this model. We then demonstrate that the metal-insulator transition must occur simultaneously with the spontaneous $mathcal{PT}$-symmetry breaking transition in this model. Finally, we propose an experimental protocol based on a 1D photonic lattice to distinguish the extended and localized single-particle states in our model.
131 - Ang-Kun Wu 2021
The Aubry-Andre model is a one-dimensional lattice model for quasicrystals with localized and delocalized phases. At the localization transition point, the system displays fractal spectrum, which relates to the Hofstadter butterfly. In this work, we uncover the exact self-similarity structures in the energy spectrum. We separate the fractal structures into two parts: the fractal filling positions of gaps and the scaling of gap sizes. We show that the fractal fillings emerge for a certain type of incommensurate periodicity regardless of potential strength. However, the power-law scaling of gap sizes is characteristic for general incommensurability at the critical point of the model.
97 - Zhihao Xu , Xu Xia , 2021
The emergence of the mobility edge (ME) has been recognized as an important characteristic of Anderson localization. The difficulty in understanding the physics of the MEs in three-dimensional (3D) systems from a microscopic picture promotes discovering of models with the exact MEs in lower-dimensional systems. While most of previous studies concern on the one-dimensional (1D) quasiperiodic systems, the analytic results that allow for an accurate understanding of two-dimensional (2D) cases are rare. In this Letter, we disclose an exactly solvable 2D quasicrystal model with parity-time ($mathcal{PT}$) symmetry displaying exact MEs. In the thermodynamic limit, we unveil that the extended-localized transition point, observed at the $mathcal{PT}$ symmetry breaking point, is of topological nature characterized by a hidden winding number defined in the dual space. The 2D non-Hermitian quasicrystal model can be realized in the coupling waveguide platform, and the localization features can be detected by the excitation dynamics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا