No Arabic abstract
Quantum localization in 1D non-Hermitian systems, especially the search for exact single-particle mobility edges, has attracted considerable interest recently. While much progress has been made, the available methods to determine the ME of such models are still limited. In this work, we propose a new method to determine the exact mobility edge in a large class of 1D non-Hermitian quasiperiodic models with parity-time ($mathcal{PT}$) symmetry. We illustrate our method by studying a specific model. We first use our method to determine the energy-dependent mobility edge as well as the spectrum for localized eigenstates in this model. We then demonstrate that the metal-insulator transition must occur simultaneously with the spontaneous $mathcal{PT}$-symmetry breaking transition in this model. Finally, we propose an experimental protocol based on a 1D photonic lattice to distinguish the extended and localized single-particle states in our model.
Mobility edges, separating localized from extended states, are known to arise in the single-particle energy spectrum of disordered systems in dimension strictly higher than two and certain quasiperiodic models in one dimension. Here we unveil a different class of mobility edges, dubbed anomalous mobility edges, that separate bands of localized states from bands of critical states in diagonal and off-diagonal quasiperiodic models. We first introduce an exactly solvable quasi-periodic diagonal model and analytically demonstrate the existence of anomalous mobility edges. Moreover, numerical multifractal analysis of the corresponding wave functions confirms the emergence of a finite band of critical states. We then extend the sudy to a quasiperiodic off-diagonal Su-Schrieffer-Heeger model and show numerical evidence of anomalous mobility edges. We finally discuss possible experimental realizations of quasi-periodic models hosting anomalous mobility edges. These results shed new light on the localization and critical properties of low-dimensional systems with aperiodic order.
The mobility edges (MEs) in energy which separate extended and localized states are a central concept in understanding the localization physics. In one-dimensional (1D) quasiperiodic systems, while MEs may exist for certain cases, the analytic results which allow for an exact understanding are rare. Here we uncover a class of exactly solvable 1D models with MEs in the spectra, where quasiperiodic on-site potentials are inlaid in the lattice with equally spaced sites. The analytical solutions provide the exact results not only for the MEs, but also for the localization and extended features of all states in the spectra, as derived through computing the Lyapunov exponents from Avilas global theory, and also numerically verified by calculating the fractal dimension. We further propose a novel scheme with experimental feasibility to realize our model based on an optical Raman lattice, which paves the way for experimental exploration of the predicted exact ME physics.
The emergence of the mobility edge (ME) has been recognized as an important characteristic of Anderson localization. The difficulty in understanding the physics of the MEs in three-dimensional (3D) systems from a microscopic picture promotes discovering of models with the exact MEs in lower-dimensional systems. While most of previous studies concern on the one-dimensional (1D) quasiperiodic systems, the analytic results that allow for an accurate understanding of two-dimensional (2D) cases are rare. In this Letter, we disclose an exactly solvable 2D quasicrystal model with parity-time ($mathcal{PT}$) symmetry displaying exact MEs. In the thermodynamic limit, we unveil that the extended-localized transition point, observed at the $mathcal{PT}$ symmetry breaking point, is of topological nature characterized by a hidden winding number defined in the dual space. The 2D non-Hermitian quasicrystal model can be realized in the coupling waveguide platform, and the localization features can be detected by the excitation dynamics.
We propose a general analytic method to study the localization transition in one-dimensional quasicrystals with parity-time ($mathcal{PT}$) symmetry, described by complex quasiperiodic mosaic lattice models. By applying Avilas global theory of quasiperiodic Schrodinger operators, we obtain exact mobility edges and prove that the mobility edge is identical to the boundary of $mathcal{PT}$-symmetry breaking, which also proves the existence of correspondence between extended (localized) states and $mathcal{PT}$-symmetry ($mathcal{PT}$-symmetry-broken) states. Furthermore, we generalize the models to more general cases with non-reciprocal hopping, which breaks $mathcal{PT}$ symmetry and generally induces skin effect, and obtain a general and analytical expression of mobility edges. While the localized states are not sensitive to the boundary conditions, the extended states become skin states when the periodic boundary condition is changed to open boundary condition. This indicates that the skin states and localized states can coexist with their boundary determined by the mobility edges.
We investigate localization properties in a two-coupled uniform chains with quasiperiodic modulation on interchain coupling strength. We demonstrate that this ladder is equivalent to a Aubry-Andre (AA) chain when two legs are symmetric. Analytical and numerical results indicate the appearance of mobility edges for asymmetric ladder. We also propose an easily engineered quasiperiodic ladder system which is a moir{e} superlattice system consisting of two-coupled uniform chains. An irrational lattice constant difference results in quasiperiodic structure. Numerical simulations show that such a system supports mobility edge. Additionally, we find that the mobility edge can be detected by a dynamic method, which bases on the measurement of surviving probability in the presence of a single imaginary negative potential as a leakage. The result provides insightful information about the localization transitions and mobility edge in experiment.