No Arabic abstract
The 13 TeV run of the LHC has provided a unique opportunity to explore multi-jet final states with unprecedented accuracy. An interesting region for study is that of events where one jet is tagged in the forward direction and another one in the backward direction and a plethora of low energy mini-jets populate the possibly large rapidity span in between them. Since the number of these events is very high, it is possible to introduce stringent constraints on the transverse momentum of the two leading jets which can be kept in small windows not very different from each other, defining what we call twin jets. The associated crowd of mini-jets can also have a restricted span in transverse momentum. The study of these events for a fixed multiplicity is an ideal playground to investigate different models of multi-particle production in hadron-hadron collisions. We set up an exploratory analysis by using an ancient model of Chew and Pignotti to describe the gross features one can expect for the structure of single and double differential-in-rapidity cross sections and for particle-particle rapidity correlations when the longitudinal phase space completely decouples from the transverse degrees of freedom.
In this work, we analyse and demonstrate possible strategies to explore extended Higgs sector of the Minimal Supersymmetric Standard Model (MSSM). In particular we concentrate on heavy Higgs decays to electroweakinos. We analyse the Higgs to electrow
We consider hard diffractive events in proton-proton collisions at the LHC, in which both protons escape the collision intact. In such double Pomeron exchange processes, we propose to measure dijets and photon-jet final states, and we show that it has the potential to pin down the Pomeron quark and gluon contents, a crucial ingredient in the standard QCD description of hard diffraction. By comparing with predictions of the soft color interaction approach, we also show that more generally, the measurement of the photon-jet to di-jet cross section ratio can put stringent test on the QCD dynamics at play in diffractive processes in hadronic collisions.
Centrality selection has been observed to have a large effect on jet observables in pPb collisions at the Large Hadron Collider, stronger than that predicted by the nuclear modification of parton densities. We study to which extent simple considerations of energy-momentum conservation between the hard process and the underlying event affect jets observables in such collisions. We develop a simplistic approach that considers first the production of jets in a pp collision as described by PYTHIA. From each pp collision, the value of the energy of the parton from the proton participating in the hard scattering is extracted. Then, the underlying event is generated simulating a pPb collision through HIJING, but with the energy of the proton decreased according to the value extracted in the previous step, and both collisions are superimposed. This model is able to capture the bulk of the centrality effect for central to semicentral collisions, for the two available sets of data: dijets from the CMS Collaboration and single jets from the ATLAS Collaboration. As expected, the model fails for peripheral collisions where very few nucleons from Pb participate.
We estimate the number of quark jets in QCD multi-jet final states at hadron colliders. In the estimation, we develop the calculation of jet rates into that of quark jet rates. From the calculation, we estimate the improvement on the signal-to-background ratio for a signal semi-analytically by applying quark/gluon discrimination, where the signal predicts many quark jets. We introduce a variable related to jet flavors in multi-jet final states and propose a data-driven method using the variable to reduce systematic uncertainties of analysis results. As the same with the semi-analytical result, the improvements on the signal-to-background ratio using the variable in Monte-Carlo analysis are estimated.
At the Large Hadron Collider (LHC), the most abundant processes which take place in proton-proton collisions are the generation of multijet events. These final states rely heavily on phenomenological models and perturbative corrections which are not fully understood, and yet for many physics searches at the LHC, multijet processes are an important background to deal with. It is therefore imperative that the modelling of multijet processes is better understood and improved. For this reason, a study has been done with several state-of-the-art Monte Carlo event generators, and their predictions are tested against ATLAS data using the Rivet framework. The results display a mix of agreement and disagreement between the predictions and data, depending on which variables are studied. Several points for improvement on the modelling of multijet processes are stated and discussed.