No Arabic abstract
We study the problem of sampling a uniformly random directed rooted spanning tree, also known as an arborescence, from a possibly weighted directed graph. Classically, this problem has long been known to be polynomial-time solvable; the exact number of arborescences can be computed by a determinant [Tut48], and sampling can be reduced to counting [JVV86, JS96]. However, the classic reduction from sampling to counting seems to be inherently sequential. This raises the question of designing efficient parallel algorithms for sampling. We show that sampling arborescences can be done in RNC. For several well-studied combinatorial structures, counting can be reduced to the computation of a determinant, which is known to be in NC [Csa75]. These include arborescences, planar graph perfect matchings, Eulerian tours in digraphs, and determinantal point processes. However, not much is known about efficient parallel sampling of these structures. Our work is a step towards resolving this mystery.
Let $Phi = (V, mathcal{C})$ be a constraint satisfaction problem on variables $v_1,dots, v_n$ such that each constraint depends on at most $k$ variables and such that each variable assumes values in an alphabet of size at most $[q]$. Suppose that each constraint shares variables with at most $Delta$ constraints and that each constraint is violated with probability at most $p$ (under the product measure on its variables). We show that for $k, q = O(1)$, there is a deterministic, polynomial time algorithm to approximately count the number of satisfying assignments and a randomized, polynomial time algorithm to sample from approximately the uniform distribution on satisfying assignments, provided that [Ccdot q^{3}cdot k cdot p cdot Delta^{7} < 1, quad text{where }C text{ is an absolute constant.}] Previously, a result of this form was known essentially only in the special case when each constraint is violated by exactly one assignment to its variables. For the special case of $k$-CNF formulas, the term $Delta^{7}$ improves the previously best known $Delta^{60}$ for deterministic algorithms [Moitra, J.ACM, 2019] and $Delta^{13}$ for randomized algorithms [Feng et al., arXiv, 2020]. For the special case of properly $q$-coloring $k$-uniform hypergraphs, the term $Delta^{7}$ improves the previously best known $Delta^{14}$ for deterministic algorithms [Guo et al., SICOMP, 2019] and $Delta^{9}$ for randomized algorithms [Feng et al., arXiv, 2020].
We give an FPTAS for computing the number of matchings of size $k$ in a graph $G$ of maximum degree $Delta$ on $n$ vertices, for all $k le (1-delta)m^*(G)$, where $delta>0$ is fixed and $m^*(G)$ is the matching number of $G$, and an FPTAS for the number of independent sets of size $k le (1-delta) alpha_c(Delta) n$, where $alpha_c(Delta)$ is the NP-hardness threshold for this problem. We also provide quasi-linear time randomized algorithms to approximately sample from the uniform distribution on matchings of size $k leq (1-delta)m^*(G)$ and independent sets of size $k leq (1-delta)alpha_c(Delta)n$. Our results are based on a new framework for exploiting local central limit theorems as an algorithmic tool. We use a combination of Fourier inversion, probabilistic estimates, and the deterministic approximation of partition functions at complex activities to extract approximations of the coefficients of the partition function. For our results for independent sets, we prove a new local central limit theorem for the hard-core model that applies to all fugacities below $lambda_c(Delta)$, the uniqueness threshold on the infinite $Delta$-regular tree.
We study the problem of sampling an approximately uniformly random satisfying assignment for atomic constraint satisfaction problems i.e. where each constraint is violated by only one assignment to its variables. Let $p$ denote the maximum probability of violation of any constraint and let $Delta$ denote the maximum degree of the line graph of the constraints. Our main result is a nearly-linear (in the number of variables) time algorithm for this problem, which is valid in a Lovasz local lemma type regime that is considerably less restrictive compared to previous works. In particular, we provide sampling algorithms for the uniform distribution on: (1) $q$-colorings of $k$-uniform hypergraphs with $Delta lesssim q^{(k-4)/3 + o_{q}(1)}.$ The exponent $1/3$ improves the previously best-known $1/7$ in the case $q, Delta = O(1)$ [Jain, Pham, Vuong; arXiv, 2020] and $1/9$ in the general case [Feng, He, Yin; STOC 2021]. (2) Satisfying assignments of Boolean $k$-CNF formulas with $Delta lesssim 2^{k/5.741}.$ The constant $5.741$ in the exponent improves the previously best-known $7$ in the case $k = O(1)$ [Jain, Pham, Vuong; arXiv, 2020] and $13$ in the general case [Feng, He, Yin; STOC 2021]. (3) Satisfying assignments of general atomic constraint satisfaction problems with $pcdot Delta^{7.043} lesssim 1.$ The constant $7.043$ improves upon the previously best-known constant of $350$ [Feng, He, Yin; STOC 2021]. At the heart of our analysis is a novel information-percolation type argument for showing the rapid mixing of the Glauber dynamics for a carefully constructed projection of the uniform distribution on satisfying assignments. Notably, there is no natural partial order on the space, and we believe that the techniques developed for the analysis may be of independent interest.
Broadcasting in a computer network is a method of transferring a message to all recipients simultaneously. It is common in this situation to use a tree with many leaves to perform the broadcast, as internal nodes have to forward the messages received, while leaves are only receptors. We consider the subjacent problem of, given a directed graph~$D$, finding a spanning arborescence of D, if one exists, with the maximum number of leaves. In this paper, we concentrate on the class of rooted directed acyclic graphs, for which the problem is known to be MaxSNP-hard. A 2-approximation was previously known for this problem on this class of directed graphs. We improve on this result, presenting a (3/2)-approximation. We also adapt a result for the undirected case and derive an inapproximability result for the vertex-weighted version of Maximum Leaf Spanning Arborescence on rooted directed acyclic graphs.
In a minimum cost submodular cover problem (MinSMC), given a monotone non-decreasing submodular function $fcolon 2^V rightarrow mathbb{Z}^+$, a cost function $c: Vrightarrow mathbb R^{+}$, an integer $kleq f(V)$, the goal is to find a subset $Asubseteq V$ with the minimum cost such that $f(A)geq k$. MinSMC has a lot of applications in machine learning and data mining. In this paper, we design a parallel algorithm for MinSMC which obtains a solution with approximation ratio at most $frac{H(min{Delta,k})}{1-5varepsilon}$ with probability $1-3varepsilon$ in $O(frac{log mlog nlog^2 mn}{varepsilon^4})$ rounds, where $Delta=max_{vin V}f(v)$, $H(cdot)$ is the Hamornic number, $n=f(V)$, $m=|V|$ and $varepsilon$ is a constant in $(0,frac{1}{5})$. This is the first paper obtaining a parallel algorithm for the weighted version of the MinSMC problem with an approximation ratio arbitrarily close to $H(min{Delta,k})$.